【題目】如圖,在平面直角坐標系中,已知點的坐標為,且,拋物線圖象經(jīng)過三點.

1)求兩點的坐標;

2)求拋物線的解析式;

3)若點是直線下方的拋物線上的一個動點,作于點,當的值最大時,求此時點的坐標及的最大值.

【答案】1A40),C0,﹣4);(2 ;(3PD的最大值為,此時點P2,﹣6).

【解析】

1OAOC4OB4,即可求解;

(2)拋物線的表達式為: ,即可求解;

3,即可求解.

解:(1OAOC4OB4,

故點AC的坐標分別為(4,0)、(0,﹣4);

2)拋物線的表達式為:,

即﹣4a=﹣4,解得:a1,

故拋物線的表達式為:

3)直線CA過點C,設(shè)其函數(shù)表達式為:

將點A坐標代入上式并解得:k1,

故直線CA的表達式為:yx4,

過點Py軸的平行線交AC于點H,

OAOC4,

,

設(shè)點 ,則點Hx,x4),

0,∴PD有最大值,當x2時,其最大值為,

此時點P2,﹣6).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,點,分別在邊,上,且

1)如圖1,若,求證:;

2)如圖2,若,且點的中點,連接于點,求;

3)如圖3,若,探究線段、三之間的數(shù)量關(guān)系,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線為常數(shù))交軸于點,與軸的一個交點在之間,頂點為

①拋物線與直線有且只有一個交點;

②若點、點、點在該函數(shù)圖象上,則

③將該拋物線向左平移個單位,再向下平移個單位,所得拋物線解析式為

④點關(guān)于直線的對稱點為分別在軸和軸上,當時,四邊形周長的最小值為

其中正確判斷的序號是( )

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEF都是等腰直角三角形,∠ACB=EFD=90,DEF,的頂點EABC的斜邊AB的中點重合.將DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段AC與線段EF相交于點Q,射線ED與射線BC相交于點P.

(1)求證:AEQ∽△BPE;

(2)求證:PE平分∠BPQ;

(3)AQ=2,AE=,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常嚴重;B級:嚴重;C級:一般;D級:沒有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是   ;把圖2條形統(tǒng)計圖補充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴重與嚴重的養(yǎng)殖戶一共有多少戶?

3)某調(diào)研單位想從5戶建檔養(yǎng)殖戶(分別記為a,b,cde)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一枚均勻的正四面體,四個面上分別標有數(shù)字1,2,3,4,小紅隨機地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫有數(shù)字2,-11的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計算出S=x+y的值.

(1)用樹狀圖或列表法表示出S的所有可能情況;

(2)分別求出當S=0S<2時的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0 過點A 3,4),直線ACx軸交于點C 6,0),交y軸于點E,過點Cx軸的垂線BC交反比例函數(shù)圖象于點B

1)求k的值與B點的坐標;

2)將直線EC向右平移,當點E正好落在反比例函數(shù)圖象上的點E' 時,直線交x軸于點F.請判斷點B是否在直線EF上并說明理由;

3)在平面內(nèi)有點M,使得以AB、F、M四點為頂點的四邊形為平行四邊形,請直接寫出符合條件的所有M點的坐標.

查看答案和解析>>

同步練習冊答案