【題目】RtABC中,∠ACB90°,AC1,記∠ABCα,點(diǎn)D為射線(xiàn)BC上的動(dòng)點(diǎn),連接AD,將射線(xiàn)DA繞點(diǎn)D順時(shí)針旋轉(zhuǎn)α角后得到射線(xiàn)DE,過(guò)點(diǎn)AAD的垂線(xiàn),與射線(xiàn)DE交于點(diǎn)P,點(diǎn)B關(guān)于點(diǎn)D的對(duì)稱(chēng)點(diǎn)為Q,連接PQ

1)當(dāng)△ABD為等邊三角形時(shí),

①依題意補(bǔ)全圖1;

PQ的長(zhǎng)為   ;

2)如圖2,當(dāng)α45°,且BD時(shí),求證:PDPQ;

3)設(shè)BCt,當(dāng)PDPQ時(shí),直接寫(xiě)出BD的長(zhǎng).(用含t的代數(shù)式表示)

【答案】1)①詳見(jiàn)解析;②2;(2)詳見(jiàn)解析;(3BD

【解析】

1)①根據(jù)題意畫(huà)出圖形即可.

②解直角三角形求出PA,再利用全等三角形的性質(zhì)證明PQPA即可.

2)作PFBQF,AHPFH.通過(guò)計(jì)算證明DFFQ即可解決問(wèn)題.

3)如圖3中,作PFBQF,AHPFH.設(shè)BDx,則CDxt ,利用相似三角形的性質(zhì)構(gòu)建方程求解即可解決問(wèn)題.

1)解:①補(bǔ)全圖形如圖所示:

②∵△ABD是等邊三角形,ACBDAC1

∴∠ADC60°,∠ACD90°

∵∠ADP=∠ADB60°,∠PAD90°

PAADtan60°=2

∵∠ADP=∠PDQ60°,DPDPDADBDQ

∴△PDA≌△PDQSAS

PQPA2

2)作PFBQFAHPFH,如圖:

PAAD

∴∠PAD90°

由題意可知∠ADP45°

∴∠APD90°﹣45°=45°=∠ADP

PAPD

∵∠ACB90°

∴∠ACD90°

AHPF,PFBQ

∴∠AHF=∠HFC=∠ACF90°

∴四邊形ACFH是矩形

∴∠CAH90°,AHCF

∵∠ACH=∠DAP90°

∴∠CAD=∠PAH

又∵∠ACD=∠AHP90°

∴△ACD≌△AHPAAS

AHAC1

CFAH1

,BC1,BQ關(guān)于點(diǎn)D對(duì)稱(chēng)

,

FDQ中點(diǎn)

PF垂直平分DQ

PQPD

3)如圖3中,作PFBQF,AHPFH.設(shè)BDx,則CDxt,

PDPQ,PFDQ

∵四邊形AHFC是矩形

∵△ACB∽△PAD

∵△PAH∽△DAC

解得

故答案是:(1)①詳見(jiàn)解析;②2;(2)詳見(jiàn)解析;(3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】截至北京時(shí)間202032214時(shí)30分,全球新冠肺炎確診病例達(dá)305740例,超過(guò)30萬(wàn),死亡病例累計(jì)12762人,將“305740”這個(gè)數(shù)字用科學(xué)記數(shù)法表示保留兩位有效數(shù)字為(  )

A.3.05740×105B.3.05×105C.3.0×105D.3.1×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在半圓O中,AB為直徑,AC、AD為兩條弦,且∠CAD+CAB90°.

1)如圖1,求證:弧AC等于弧CD;

2)如圖2,點(diǎn)E在直徑AB上,CEAD于點(diǎn)F,若AFCF,求證:AD2CE;

3)如圖3,在(2)的條件下,連接BD,若AE4,BD12,求弦AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB6,點(diǎn)E在對(duì)角線(xiàn)BD上,DE2,連接CE,過(guò)點(diǎn)EEFCE,交線(xiàn)段AB于點(diǎn)F

1)求證:CEEF;

2)求FB的長(zhǎng);

3)連接FCBD于點(diǎn)G.求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)為了了解當(dāng)年春游時(shí)學(xué)生的個(gè)人消費(fèi)情況,從其中一所學(xué)校的初三年級(jí)中隨機(jī)抽取了部分學(xué)生春游消費(fèi)情況進(jìn)行調(diào)查,并將這部分學(xué)生的消費(fèi)額繪制成頻率分布直方圖.已知從左至右第一組的人數(shù)為12名.請(qǐng)根據(jù)所給的信息回答:

1)被抽取調(diào)查的學(xué)生人數(shù)為 名;

2)從左至右第五組的頻率是

3)假設(shè)每組的平均消費(fèi)額以該組的最小值計(jì)算,那么被抽取學(xué)生春游的最低平均消費(fèi)額為 元;

4)以第(3)小題所求得的最低平均消費(fèi)額來(lái)估計(jì)該地區(qū)全體學(xué)生春游的最低平均消費(fèi)額,你認(rèn)為是否合理?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘗試探究:如圖,在中,,E,F分別是BC,AC上的點(diǎn),且,則______

類(lèi)比延伸:如圖,若將圖中的繞點(diǎn)C順時(shí)針旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,值是否發(fā)生變化?請(qǐng)僅就圖的情形寫(xiě)出推理過(guò)程;

拓展運(yùn)用:若,,在旋轉(zhuǎn)過(guò)程中,當(dāng)BE,F三點(diǎn)在同一直線(xiàn)上時(shí),請(qǐng)直接寫(xiě)出此時(shí)線(xiàn)段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y的圖象經(jīng)過(guò)點(diǎn)P34).

1)求k的值;

2)求OP的長(zhǎng);

3)直線(xiàn)ymxm≠0)與反比例函數(shù)的圖象有兩個(gè)交點(diǎn)A,B,若AB10,直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=45°,∠B=60°,BC+1,點(diǎn)P為邊AB上一動(dòng)點(diǎn),過(guò)點(diǎn)PPDBC于點(diǎn)D,PEAC于點(diǎn)E,則DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與軸的另一個(gè)交點(diǎn)為A(-2,0).

(1)求二次函數(shù)的解析式

(2)在拋物線(xiàn)上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案