精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線 和直線y=(k+1x+k+12

1)求證:無論k取何值,拋物線總與x軸有兩個不同的交點;

2)如果拋物線與x軸的交點A,B在原點的右邊,直線與x軸的交點C在原點的左邊,又拋物線、直線分別交y軸于點D,E,直線AD交直線CE于點G(如圖),且CAGECGAB,求拋物線的解析式.

【答案】(1)見解析;(2)yx24x+3

【解析】

1)求出根的判別式并化為完全平方形式,利用一元二次方程的根的判別式大于0確定出拋物線與x軸的交點坐標有兩個;

2)由CAGE=CGAB得出△CAG∽△CBE,進而判斷出△OAD∽△OBE得出OAOB=ODOE,拋物線與x軸交點是AB兩點,根據根與系數的關系可得OAOB.根據圖象與y軸交點可得:OD,OE=(k+12,從而求得OBk+1,進而代入拋物線解析式求出k值即可.

解:(1)證明:∵=(k+224×1×k2k+2,

,

0,

故無論k取何實數值,拋物線總與x軸有兩個不同的交點;

2)∵CAGECGAB,

CACBCGCE

∵∠ACG=∠BCE,

CAGCBE,

∴∠CAG=∠CBE

∵∠AOD=∠BOE,

OADOBE

OAOBODOE,

∵拋物線與x軸的交點A、B在原點的右邊,

直線與x軸的交點C在原點的左邊,

又拋物線、直線分別交y軸于點D、E

OAOB,OD,OE=(k+12,

OAOBOD,由OAOBODOE

OAOB=(OAOB):OE,

OB2OE

OBk+1,

∴點Bk+10),

將點B代入拋物線yx2﹣(k+2x+得:

k+12﹣(k+2)(k+1)﹣0

解得:k2,

∴拋物線的解析式為:yx24x+3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4a經過A(﹣1,0)、C(0,4)兩點,與x軸交于另一點B.

(1)求拋物線的解析式;

(2)求拋物線的頂點坐標

(3)已知點D(m,m+1)在第一象限的拋物線上,求點D的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若拋物線y=x2+bx(b>2)上存在關于直線y=x成軸對稱的兩個點,則b的取值范圍是______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,直線ykx+4k≠0)交x軸于點A8,0),交y軸于點B,

1k的值是  ;

2)點C是直線AB上的一個動點,點D和點E分別在x軸和y軸上.

①如圖,點E為線段OB的中點,且四邊形OCED是平行四邊形時,求OCED的周長;

②當CE平行于x軸,CD平行于y軸時,連接DE,若CDE的面積為,請直接寫出點C的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.

(1)求拋物線的解析式;

(2)用含m的代數式表示點E的坐標,并求出點E縱坐標的范圍;

(3)求BCE的面積最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖線段AB的端點在邊長為1的正方形網格的格點上,現將線段AB繞點A按逆時針方向旋轉90°得到線段AC

1)請你用尺規(guī)在所給的網格中畫出線段AC及點B經過的路徑;

2)若將此網格放在一平面直角坐標系中,已知點A的坐標為(1,3),點B的坐標為(-2-1),則點C的坐標為

3)線段AB在旋轉到線段AC的過程中,線段AB掃過的區(qū)域的面積為

4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側面,則該幾何體底面圓的半徑長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用適當的方法解下列方程:

(1)x-1290;

(2)3x+5=x+52

(3)x26x550;

(4)2x(x3)10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將平行四邊形ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F

1)求證:AC=BE

2)若∠AFC=2D,連接ACBE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=﹣x2+2x+3的頂點為D,它與x軸交于AB兩點(點A在點B的左側),與y軸交于點C

1)求頂點D的坐標;

2)求直線BC的解析式;

3)求△BCD的面積;

4)當點P在直線BC上方的拋物線上運動時,△PBC的面積是否存在最大值?若存在,請求出這個最大值,并且寫出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案