【題目】如圖,已知正方形ABCD的邊長為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時(shí)針旋轉(zhuǎn)90°,得到DF,連接AF,則AF的最小值是_____.
【答案】3﹣1.
【解析】分析:先找出AF最大值時(shí),點(diǎn)E的位置,再判斷出AF最大時(shí),點(diǎn)C在AF上,根據(jù)正方形的性質(zhì)求出AC,從而得出AF的最大值.
詳解:如圖1,連接FC,AF,
∵ED⊥DF,
∴∠EDF=∠EDA+∠ADF=90°,
∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ADF+∠CDF=90°,
∴∠EDA=∠CDF,
在△ADE和△CDF中,
∵,
∴△ADE≌△CDF,
∴CF=AE=1,
∴AF>AC﹣CF,即AF>AC﹣1,
∴當(dāng)F在AC上時(shí),AF最小,如圖2,
∵正方形ABCD的邊長為3,
∴AC=3,
∴AF的最小值是3﹣1;
故答案為:3﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2; ②3a+c>0;③方程 的兩個(gè)根是x1=﹣1,x2=3;④當(dāng)y>0時(shí),x的取值范圍是﹣1<x<3⑤當(dāng)x>0時(shí),y隨x的增大而減小.其中結(jié)論正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)A,B,C,表示的數(shù)分別是﹣4,﹣2,3.
(1)若使C、B兩點(diǎn)的距離是A、B兩點(diǎn)的距離的2倍,則需將點(diǎn)C向左移動(dòng) 個(gè)單位;
(2)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒a個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和5個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒:
①點(diǎn)A、B、C表示的數(shù)分別是 、 、 。ㄓ煤琣、t的代數(shù)式表示);
②若點(diǎn)B與點(diǎn)C之間的距離表示為d1,點(diǎn)A與點(diǎn)B之間的距離表示為d2,當(dāng)a為何值時(shí),5d1﹣3d2的值不會(huì)隨著時(shí)間t的變化而改變,并求此時(shí)5d1﹣3d2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,文具店老板購進(jìn)100只兩種型號的文具進(jìn)行銷售,其進(jìn)價(jià)和售價(jià)之間的關(guān)系如下表:
型號 | 進(jìn)價(jià)(元/只) | 售價(jià)(元/只) |
A型 | 10 | 14 |
B型 | 15 | 22 |
(1)老板如何進(jìn)貨,能使進(jìn)貨款恰好為1350元?
(2)要使銷售文具所獲利潤不少于500元,那么老板最多能購進(jìn)A型文具多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在△ABC中,D在AB邊上,DE⊥BC于E,∠A=2∠BDE.
(1)求證:AB=AC;
(2)延長CA至F,連接BF,G在線段BF上,連接DG,∠F=∠BDK,延長GD交BC于K,如圖2,試判斷線段KG與BG的數(shù)量關(guān)系,并加以證明;
(3)在(2)的條件下,連接CG、FK,CG=FK,∠CGK=∠BFK,FG=2,CK=3,如圖3,求線段BF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,若△CEF的面積為18cm2,則S△DGF等于( )
A.4cm2B.5cm2C.6cm2D.7 cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果把月亮繞地球旋轉(zhuǎn)的軌跡看成一個(gè)圓,地心在圓心上。我們知道地球每24小時(shí)逆時(shí)針方向自轉(zhuǎn)一圈(從俯視角度看),月亮每月逆時(shí)針繞地球旋轉(zhuǎn)一圈.
(1)求地球每小時(shí)旋轉(zhuǎn)的角度;
(2)求月亮繞地球每小時(shí)旋轉(zhuǎn)的角度(每月以30天記);
(3)某月15日20:00時(shí),月亮恰好在甲地正上方(如圖),到第二天大約幾時(shí)幾分月亮再次出現(xiàn)在甲地正上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度,△ABC三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A',點(diǎn)B、C的對應(yīng)點(diǎn)分別是點(diǎn)B'、C'.
(1)△ABC的面積是 ;
(2)畫出平移后的△A'B'C';
(3)若連接AA'、CC′,這兩條線段的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生態(tài)公園計(jì)劃在園內(nèi)的坡地上造一片有、兩種樹的混合林,需要購買這兩種樹苗2000棵,種植、兩種樹苗的相關(guān)信息如下表:
品名 | 單價(jià)(元/棵) | 栽樹勞務(wù)費(fèi)(元/棵) | 成活率 |
25 | 3 | ||
30 | 4 |
設(shè)購買種樹苗棵,解答下列問題:
(1)購買的種樹苗的數(shù)量為_______棵(含的代數(shù)式表示);
(2)請用含的代數(shù)式表示造這片林的總費(fèi)用;
(3)假設(shè)這批樹苗種植后成活1960棵,則造這片林的總費(fèi)用需多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com