【題目】百子回歸圖是由 1,2,3,…,100 無重復排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,中央四 “19 99 12 20”標示澳門回歸日期,最后一行中間兩 “23 50”標示澳門面積,…,同時它也是十階幻方, 其每行 10 個數(shù)之和每列 10 個數(shù)之和、每條對角線10 個數(shù)之和均相等,則這個和為______

【答案】505

【解析】

根據(jù)已知得:百子回歸圖是由1,2,3…,100無重復排列而成,先計算總和;又因為一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和=總和÷10,代入求解即可.

1~100的總和為: =5050,
一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和為:n=5050÷10=505,

故答案為505.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,反比例函數(shù)y=的圖象經(jīng)過點T.下列各點P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在該函數(shù)圖象上的點有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖2211拋物線yax2+2axc(a>0)y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;

(3)拋物線線上是否存在一點P,使,若存在,請求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,以為直徑作分別交,于點,,連接,過點,垂足為,交于點

(1)求證:;

(2)若,求線段的長;

(3)在的條件下,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(-1,0),B4,0C0,2)三點,點D與點C關于x軸對稱,點Px軸上的一個動點,設點P的坐標為(m,0),過點Px軸的垂線交拋物線于點Q,交直線BD于點M

1)求該拋物線所表示的二次函數(shù)的表達式;

2)已知點F0,),當點Px軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ABC=45°,CDAB于點DBEAC于點E,BECD交于點F。

1)求證:ACD≌△FBD。

2)若AB=5,AD=1,求BF的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,點從點出發(fā)向點運動,運動到點即停止;同時點從點出發(fā)向點運動,運動到點即停止.點、的速度的速度都是,連結(jié),,設點、運動的時間為

為何值時,四邊形是矩形?

為何值時,四邊形是菱形?

分別求出中菱形的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經(jīng)過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內(nèi)接格點三角形”.設對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內(nèi)接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是( 。

A. 7 B. 8 C. 14 D. 16

查看答案和解析>>

同步練習冊答案