【題目】為美化市容市貌,我市在春節(jié)前夕計劃在市區(qū)幾個公園建造、兩種型號花燈供市民觀賞,根據(jù)預算,共需資金萬元.若建造一個種花燈和兩個類種花燈共 需資金萬元;建造兩個種花燈和一個種花燈共需資金萬元.

(1)問建造一個種型號花燈和一個種型號花燈所需資金分別是多少萬元?

(2)若建造種型號花燈不超過個,則種型號花燈至少要建造多少個?

【答案】(1)建造一個種型號花燈和一個種型號花燈所需的資金分分別為萬元和萬元;(2B種型號花燈至少要建造 12

【解析】

1)可根據(jù)若建造一個種花燈和兩個類種花燈共 需資金萬元;建造兩個種花燈和一個種花燈共需資金萬元,列出方程組求出答案;

2)根據(jù)共需資金萬元”“ 建造種型號花燈不超過,進行判斷即可.

解:(1)建造一個種型號花燈和一個種型號花燈所需的資金分別為萬元和萬元.

依題意得:

解得:

答:建造一個種型號花燈和一個種型號花燈所需的資金分分別為萬元和萬元;

2)設要建造一個種型號花燈個,建造種型號花燈個.

A種型號花燈不超過個,

,

,

答:B種型號花燈至少要建造 12個;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設該材料溫度為y),從加熱開始計算的時間為xmin).據(jù)了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關系式;

2)根據(jù)工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊長為的等邊三角形的頂點分別在上,下列結論:,其中正確的序號是(  )

A.①②④B.①②C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組做用頻率估計概率的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是( )

A.石頭、剪刀、布的游戲中,小明隨機出的是剪刀

B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球

D.擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于點A1,

1)分別計算:當∠A分別為700、800時,求∠A1的度數(shù).

2)根據(jù)(1)中的計算結果,寫出∠A與∠A1之間的數(shù)量關系___________________.

3)∠A1BC的角平分線與∠A1CD的角平分線交于點A2,∠A2BC的角平分線與∠A2CD的角平分線交于點A3,如此繼續(xù)下去可得A4,,∠An,請寫出∠A5與∠A的數(shù)量關系_________________.

4)如圖2,若EBA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時,有下面兩個結論:①∠Q+A1的值為定值;②∠D-A1的值為定值.

其中有且只有一個是正確的,請寫出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,的兩條切線,,交,設,

1)求的函數(shù)關系式;

2)若,的兩實根,求,的值;

3)在(2)的前提下,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列解答過程:如圖甲,ABCD,探索∠APC與∠BAP、∠PCD之間的關系.

解:過點PPEAB

ABCD

PEABCD(平行于同一條直線的兩條直線互相平行).

∴∠1+A=180°(兩直線平行,同旁內(nèi)角互補),

2+C=180°(兩直線平行,同旁內(nèi)角互補).

∴∠1+A+2+C=360°.

又∵∠APC=1+2,

∴∠APC+A+C=360°.

如圖乙和圖丙,ABCD,請根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】誰更合理?

某種牙膏上部圓的直徑為2.6cm,下部底邊的長為4cm,如圖,現(xiàn)要制作長方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長,他們制作的邊長如下表:

制作者

小明

小亮

小麗

小芳

正方形的邊長

2cm

2.6cm

3cm

3.4cm

1)這4位同學制作的盒子都能裝下這種牙膏嗎?(

2)若你是牙膏廠的廠長,從節(jié)約材料又方便取放牙膏的角度來看,你認為誰的制作更合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與直線分別交于點、,且,、分別是上兩點,連接,.

1)試說明:;

2)如果,求的度數(shù).

查看答案和解析>>

同步練習冊答案