【題目】如圖,直線EF與⊙O相切于點(diǎn)C,點(diǎn)A為⊙O上異于點(diǎn)C的一動(dòng)點(diǎn),⊙O的半徑為4ABEF于點(diǎn)B,設(shè)ACF=α(0°<α<180°).

1)若α=,求證:四邊形OCBA為正方形;

2)若AC―AB=1,求AC的長;

3)當(dāng)AC―AB取最大值時(shí),求α的度數(shù).

【答案】1)見解析;(2AC=;(3)∠α=

【解析】

1)連接OA,OC,證△ABC是等腰直角三角形,△OAC是等腰直角三角形,再證四邊形OCBA為矩形

OA=OC,得四邊形OCBA為正方形;(2)作OHAB,設(shè)AC=x,AB=x-1,由勾股定理得,在RtOAH中,,在RtOEC中,,;(3)根據(jù)銳角三角函數(shù)和相似三角形性質(zhì)可得出差的函數(shù)解析式,再求最值.

解:(1)連接OAOC

α=,ABEF

∴△ABC是等腰直角三角形

EF與⊙O相切于C

∴∠OCB=

∴∠OCA=

∴△OAC是等腰直角三角形

∴∠OCB=CBA=COA=900

∴四邊形OCBA為矩形

OA=OC

∴四邊形OCBA為正方形

2)如圖,作OHAB,

設(shè)AC=x,AB=x-1

∵在RtOAH中,

又∵在RtOEC中,

即:AC=

3)如圖,作OHAC,AC=2CH,設(shè)CH=xAC=2x,

由(1)(2)可得

,

AB=

AC-AB=y=2x-,∵當(dāng)x=2時(shí),y最大.

此時(shí),sinα=

α=300

同理,當(dāng)AOC的左側(cè)時(shí),α=1500,AC-AB的值最大.

∴當(dāng)AC-AB取最大值時(shí),α=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某乒乓球館普通票價(jià)20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價(jià)600元/張,每次憑卡不再收費(fèi);②銀卡售價(jià)150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時(shí),所需總費(fèi)用為y元.

1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式;

2)在同一個(gè)坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖像如圖所示,請(qǐng)根據(jù)函數(shù)圖像,寫出選擇哪種消費(fèi)方式更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥市教育教學(xué)研究室為了了解該市所有畢業(yè)班學(xué)生參加2019年安徽省中考一?荚嚨臄(shù)學(xué)成績情況(滿分:150分,等次:等,130150分;等,110129分;C等,90109分;D等,89分及以下),從該市所有參考學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果制作了如下的統(tǒng)計(jì)圖表(部分信息未給出):

2019年合肥市一模數(shù)學(xué)成績頻數(shù)分布表

等次

頻數(shù)

頻率

0.2

6

2

0.1

合計(jì)

1

2019年合肥市一模教學(xué)成績頻數(shù)分布直方圖

根據(jù)圖表中的信息,下列說法不正確的是(

A. 這次抽查了20名學(xué)生參加一?荚嚨臄(shù)學(xué)成績

B. 這次一?荚囍校荚嚁(shù)學(xué)成績?yōu)?/span>等次的頻率為0.4

C. 根據(jù)頻數(shù)分布直方圖制作的扇形統(tǒng)計(jì)圖中等次所占的圓心角為

D. 若全市有20000名學(xué)生參加中考一?荚,則估計(jì)數(shù)學(xué)成績達(dá)到等次及以上的人數(shù)有12000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知開口向下的拋物線y=ax2-2ax+2y軸的交點(diǎn)為A,頂點(diǎn)為B,對(duì)稱軸與x軸的交點(diǎn)為C,點(diǎn)A與點(diǎn)D關(guān)于對(duì)稱軸對(duì)稱,直線BDx軸交于點(diǎn)M,直線AB與直線OD交于點(diǎn)N

(1)求點(diǎn)D的坐標(biāo).

(2)求點(diǎn)M的坐標(biāo)(用含a的代數(shù)式表示).

(3)當(dāng)點(diǎn)N在第一象限,且∠OMB=ONA時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某省計(jì)劃5年內(nèi)全部地級(jí)市通高鐵.某高鐵在泰州境內(nèi)的建設(shè)即將展開,現(xiàn)有大量的沙石需要運(yùn)輸.某車隊(duì)有載質(zhì)量為8t、10t的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸100t沙石.

1)求某車隊(duì)載質(zhì)量為8t、10t的卡車各有多少輛;

2)隨著工程的進(jìn)展,某車隊(duì)需要一次運(yùn)輸沙石165t以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共7輛,車隊(duì)有多少種購買方案?請(qǐng)你一一求出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A8,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O、A),過P、O兩點(diǎn)的二次函數(shù)y1和過PA兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OBAC相交于點(diǎn)D.當(dāng)OD=AD=5時(shí),這兩個(gè)二次函數(shù)的最大值之和等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種樂器有10個(gè)孔,依次記作第1孔,第2孔,……,第10孔,演奏時(shí),第n孔與其音色的動(dòng)聽指數(shù)D之間滿足關(guān)系式,該樂器的最低動(dòng)聽指數(shù)為4k+106,求常數(shù)k的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點(diǎn)D在⊙O 上,BD平分∠ABCAC于點(diǎn)E,DFBCBC的延長線于點(diǎn)F

1)求證:FD是⊙O的切線;

2)若BD=8,sinDBF=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測得島礁P在東北方向上,繼續(xù)航行1小時(shí)后到達(dá)B處,此時(shí)測得島礁P在北偏東30°方向,同時(shí)測得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來之前用最短時(shí)間到達(dá)M處,漁船立刻加速以80海里/小時(shí)的速度繼續(xù)航行多少小時(shí)即可到達(dá)?(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案