【題目】學習千萬條,思考第一條。請你用本學期所學知識探究以下問題:
(1)已知點為直線上一點,將直角三角板的直角頂點放在點處,并在內部作射線.
①如圖1,三角板的一邊與射線重合,且,若以點為觀察中心,射線表示正北方向,求射線表示的方向;
②如圖2,將三角板放置到如圖位置,使恰好平分,且,求的度數.
(2)已知點不在同一條直線上,,平分,平分,用含的式子表示的大小.
【答案】(1)①射線OC表示的方向為北偏東60°;②45°;(2)∠MON為或或.
【解析】
(1)①根據∠MOC=∠AOC-∠AOM代入數據計算,即得出射線OC表示的方向;
②根據角的倍分關系以及角平分線的定義即可求解;
(2)分射線OC在∠AOB內部和外部兩種情況討論即可.
(1)∵∠MOC=∠AOC﹣∠AOM=150°﹣90°=60°,
∴射線OC表示的方向為北偏東60°;
(2)∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°﹣∠MON﹣∠BON
=180°﹣90°﹣45°
=45°;
Ⅱ、①如圖1:
∵∠AOB=α,∠BOC=β
∴∠AOC=∠AOB+∠BOC=90°+30°=120°
∵OM平分∠AOB,ON平分∠BOC,
∴∠AOM=∠BOM=∠AOB=α,∠CON=∠BON=∠COB=β,
∴∠MON=∠BOM+∠CON=;
②如圖2,
∠MON=∠BOM﹣∠BON=;
③如圖3,
∠MON=∠BON﹣∠BOM=.…
∴∠MON為或或.
科目:初中數學 來源: 題型:
【題目】如圖,在一條數軸上從左到右依次取A,B,C三個點,且使得點A,B到原點O的距離均為1個單位長度,點C到點A的距離為7個單位長度.
(1)在數軸上點A所表示的數是__________,點C所表示的數是_____________.
(2)若點P、Q分別從點A、C處出發(fā),沿數軸以每秒1個單位長度和每秒3個單位長度的速度同時向左運動,運動時間為t秒,當P、Q兩點相距為4個單位長度時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結AE、BE,試說明∠BAE+∠DCE=∠AEC;
(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠BAE+∠DCE=360°;
(應用)點E、F、G在直線AB與CD之間,連結AE、EF、FG和CG,其他條件不變,如圖③,若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG=______°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,直線y=﹣x+1交y軸于點B,交x軸于點A,拋物線y=﹣ x2+bx+c經過點B,與直線y=﹣x+1交于點C(4,﹣2).
(1)求拋物線的解析式;
(2)如圖,橫坐標為m的點M在直線BC上方的拋物線上,過點M作ME∥y軸交直線BC于點E,以ME為直徑的圓交直線BC于另一點D,當點E在x軸上時,求△DEM的周長.
(3)將△AOB繞坐標平面內的某一點按順時針方向旋轉90°,得到△A1O1B1,點A,O,B的對應點分別是點A1,O1,B1,若△A1O1B1的兩個頂點恰好落在拋物線上,請直接寫出點A1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市在今年對全市6000名八年級學生進行了一次視力抽樣調查,并根據統(tǒng)計數據,制作了的統(tǒng)計表和如圖所示統(tǒng)計圖.
組別 | 視力 | 頻數(人) |
A | 20 | |
B | a | |
C | b | |
D | 70 | |
E | 10 |
請根據圖表信息回答下列問題:
(1)求抽樣調查的人數;
(2)______,______,______;
(3)補全頻數分布直方圖;
(4)若視力在4.9以上(含4.9)均屬正常,則視力正常的人數占被統(tǒng)計人數的百分比是多少?根據上述信息估計該市今年八年級的學生視力正常的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是△ABC內一點,連結OB、OC,并將AB、OB、OC、AC的中點D、E、F、G依次連結,得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點,OM=3,∠OBC和∠OCB互余,求DG的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】共享單車被譽為“新四大發(fā)明”之一,如圖1所示是某公司2017年向信陽市場提供一種共享自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,AC⊥CD,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離.(結果精確到1cm,參考數據:sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如圖(a)所示,求∠AOE的度數:
(2)若∠AOD=∠AOC,∠DOE=60°,如圖(b)所示,求∠AOE的度數:
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n為正整數),如圖(c)所示,請用n含的代數式表示∠AOE的度數__________(直接寫出結果).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中,
①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;
②求點G移動路線的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com