【題目】關于x的一元二次方程x2+4kx﹣1=0根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.沒有實數(shù)根
D.無法判斷

【答案】A
【解析】解:在方程x2+4kx﹣1=0,△=(4k)2﹣4×1×(﹣1)=16k2+4.

∵16k2+4>0,

∴方程x2+4kx﹣1=0有兩個不相等的實數(shù)根.

所以答案是:A.

【考點精析】本題主要考查了求根公式的相關知識點,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】x=2是關于x的方程2x+a9=0的解,則a的值是(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2是關于x的方程x+a-3=0的解,則a的值為(

A. 1B. -1C. 3D. -3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知單項式3amb2與﹣a4bn+1的和是單項式,那么m= , n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題如果a≠b,則a,b的絕對值一定不相等_____命題.(填

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,C=90°,點OAC上,以OA為半徑的OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DEO的位置關系,并說明理由;

2)若AC=6,BC=8,OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:-y2·(-y)3·(-y)4=________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知已知拋物線經(jīng)過原點O和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.

(1)求m的值及該拋物線的解析式

(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標.

(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形?若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=x2﹣4x+n的圖象與x軸只有一個公共點,則實數(shù)n=

查看答案和解析>>

同步練習冊答案