【題目】我縣實施新課程改革后,學(xué)習(xí)的自主字習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進行了為期半個月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖下列問題:

1)本次調(diào)查中,張老師一共調(diào)査了  名同學(xué),其中C類女生有  名,D類男生有  名;

2)將上面的條形統(tǒng)計圖補充完整;

3)為了共同進步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

【答案】

120 2 ,1;(2)見解析.3,表格見解析.

【解析】

1)由扇形統(tǒng)計圖可知,特別好的占總數(shù)的15%,人數(shù)有條形圖可知3人,所以調(diào)查的樣本容量是:3÷15%,即可得出C類女生和D類男生人數(shù);

2)根據(jù)(1)中所求數(shù)據(jù)得出條形圖的高度即可;

3)根據(jù)被調(diào)査的A類和D類學(xué)生男女生人數(shù)列表即可得出答案.

解:(13÷15%=20

20×25%=5.女生:53=2,

125%50%15%=10%

20×10%=2,男生:21=1

故答案為:20,21;

2)如圖所示:

3)根據(jù)張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)迸行一幫一互助學(xué)習(xí),可以將A類與D類學(xué)生分為以下幾種情況:

利用圖表可知所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于拋物線,下列說法中錯誤的是(

A.y的最小值為1

B.圖象頂點坐標(biāo)為(2,1),對稱軸為直線x=2

C.當(dāng)x2時,y的值隨x值的增大而增大,當(dāng)x2時,y的值隨x值的增大而減小

D.它的圖象可以由的圖象向右平移2個單位長度,再向上平移1個單位長度得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個一元二次方程:M:N:,其中,以下列四個結(jié)論中,錯誤的是( )

A、如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;

B、如果方程M有兩根符號相同,那么方程N的兩根符號也相同;

C、如果5是方程M的一個根,那么是方程N的一個根;

D、如果方程M和方程N有一個相同的根,那么這個根必是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yaxh2+ka0)的圖象是拋物線,定義一種變換,先作這條拋物線關(guān)于原點對稱的拋物線y′,再將得到的對稱拋物線y′向上平移mm0)個單位,得到新的拋物線ym,我們稱ym叫做二次函數(shù)yaxh2+ka0)的m階變換.

1)已知:二次函數(shù)y2x+22+1,它的頂點關(guān)于原點的對稱點為   ,這個拋物線的2階變換的表達式為   

2)若二次函數(shù)M6階變換的關(guān)系式為y6′=(x12+5

二次函數(shù)M的函數(shù)表達式為   

若二次函數(shù)M的頂點為點A,與x軸相交的兩個交點中左側(cè)交點為點B,在拋物線y6′=(x12+5上是否存在點P,使點P與直線AB的距離最短,若存在,求出此時點P的坐標(biāo).

3)拋物線y=﹣3x26x+1的頂點為點A,與y軸交于點B,該拋物線的m階變換的頂點為點C.若△ABC是以AB為腰的等腰三角形,請直按寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:b24ac;abc>0;2a﹣b=0;8a+c<0;9a+3b+c<0,其中結(jié)論正確的是   .(填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“用三角板畫圓的切線”的畫圖過程

如圖1,已知圓上一點A,畫過A點的圓的切線.

畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;

(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.

所以直線AD就是過點A的圓的切線.

請回答:該畫圖的依據(jù)是_______________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點的“坐標(biāo)差”,而圖形G上所有點的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標(biāo)差”為 。

②拋物線y=x2+3x+3的“特征值”為

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標(biāo)差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點DE請直接寫出⊙M的“特征值”為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】西瓜經(jīng)營戶以2/千克的價格購進批小型西瓜,以3/千克的價格出售,每天可售出200千克,為了促銷,該經(jīng)營戶決定降價銷售。經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元。該經(jīng)營戶要想每天盈利200元,應(yīng)將每千克小型西瓜的售價降低多少元?

1)若設(shè)應(yīng)將每千克的售價降低x元,那么每千克的利潤為_____元,降價后何天售出數(shù)量為______千克;

2)請在第(1)小題的基礎(chǔ)上,列出方程把此題解答完整。

查看答案和解析>>

同步練習(xí)冊答案