如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長(zhǎng)?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過(guò)點(diǎn)D作AB的平行線(xiàn),與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

解:(1)當(dāng)m=2時(shí),,
把x=0代入,得:y=2,
∴點(diǎn)B的坐標(biāo)為(0,2)。
(2)延長(zhǎng)EA,交y軸于點(diǎn)F,

∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED(AAS)。∴AF=AE。
∵點(diǎn)A(m,),點(diǎn)B(0,m),
∴AF=AE=|m|,
∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,∴,即:!郉E=4。
(3)①∵點(diǎn)A的坐標(biāo)為(m,),∴點(diǎn)D的坐標(biāo)為(2m,)。
∴x=2m,y=,
∴y=,
∴所求函數(shù)的解析式為:y=。
②作PQ⊥DE于點(diǎn)Q,則△DPQ≌△BAF,
(Ⅰ)當(dāng)四邊形ABDP為平行四邊形時(shí)(如圖1),

圖1
點(diǎn)P的橫坐標(biāo)為3m,
點(diǎn)P的縱坐標(biāo)為:
把P(3m,)代入y=得:
。
解得:m=0(此時(shí)A,B,D,P在同一直線(xiàn)上,舍去)或m=8。
(Ⅱ)當(dāng)四邊形ABDP為平行四邊形時(shí)(如圖2),

圖2
點(diǎn)P的橫坐標(biāo)為m,
點(diǎn)P的縱坐標(biāo)為:,
把P(m,)代入得:
。
解得:m=0(此時(shí)A,B,D,P在同一直線(xiàn)上,舍去)或m=﹣8。
綜上所述:m的值為8或﹣8。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)與直線(xiàn)交于點(diǎn).點(diǎn)是拋物線(xiàn)上,之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸、軸的平行線(xiàn)與直線(xiàn)交于點(diǎn),

(1)求拋物線(xiàn)的函數(shù)解析式;
(2)若點(diǎn)的橫坐標(biāo)為2,求的長(zhǎng);
(3)以,為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求出之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,已知拋物線(xiàn)y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4)兩點(diǎn).

(1)求拋物線(xiàn)的解析式;
(2)將直線(xiàn)OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線(xiàn)與拋物線(xiàn)只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線(xiàn)上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿(mǎn)足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方形AOCB在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù))圖象上,△BOC的面積為

(1)求反比例函數(shù)的關(guān)系式;
(2)若動(dòng)點(diǎn)E從A開(kāi)始沿AB向B以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F 從B開(kāi)始沿BC向C以每秒個(gè)單位的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動(dòng)時(shí)間t取何值時(shí),△BEF的面積最大?
(3)當(dāng)運(yùn)動(dòng)時(shí)間為秒時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過(guò)點(diǎn)P作DP的垂線(xiàn)與y軸交于點(diǎn)E.

(1)請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo):     ;
(2)當(dāng)點(diǎn)P在線(xiàn)段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線(xiàn)段OE的長(zhǎng)有最大值,求出這個(gè)最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.

(1)求直線(xiàn)CD的解析式;
(2)求拋物線(xiàn)的解析式;
(3)將直線(xiàn)CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線(xiàn)與拋物線(xiàn)相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線(xiàn)段QE上的動(dòng)點(diǎn),點(diǎn)F是線(xiàn)段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在DA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.

(1)求BC的長(zhǎng),并求折痕BD所在直線(xiàn)的函數(shù)解析式;
(2)過(guò)點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線(xiàn)經(jīng)過(guò)B,H, D三點(diǎn),求拋物線(xiàn)解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線(xiàn)上運(yùn)動(dòng)(不含B, D點(diǎn)),過(guò)點(diǎn)P作PN⊥BC,分別交BC 和 BD于點(diǎn)N, M,是否存在這樣的點(diǎn)P,使如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,﹣1),線(xiàn)段M1N1平移至線(xiàn)段MN處(注:M1與M,N1與N分別為對(duì)應(yīng)點(diǎn)).

(1)若M(﹣2,5),請(qǐng)直接寫(xiě)出N點(diǎn)坐標(biāo).
(2)在(1)問(wèn)的條件下,點(diǎn)N在拋物線(xiàn)上,求該拋物線(xiàn)對(duì)應(yīng)的函數(shù)解析式.
(3)在(2)問(wèn)條件下,若拋物線(xiàn)頂點(diǎn)為B,與y軸交于點(diǎn)A,點(diǎn)E為線(xiàn)段AB中點(diǎn),點(diǎn)C(0,m)是y軸負(fù)半軸上一動(dòng)點(diǎn),線(xiàn)段EC與線(xiàn)段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問(wèn)條件下,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿x軸正方向勻速運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)(即BP長(zhǎng)為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時(shí)的△ABP面積的,求此時(shí)BP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線(xiàn)y=﹣(x﹣1)2+c與x軸交于A(yíng),B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).

(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案