【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點Q所有可能的坐標(biāo);
(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.

【答案】
(1)解:列表得:

(x,y)

1

2

3

4

1

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,4)

4

(4,1)

(4,2)

(4,3)

點Q所有可能的坐標(biāo)有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種


(2)解:∵共有12種等可能的結(jié)果,其中在函數(shù)y=﹣x+5圖象上的有4種,

即:(1,4),(2,3),(3,2),(4,1)

∴點P(x,y)在函數(shù)y=﹣x+5圖象上的概率為:P=


【解析】(1)首先根據(jù)題意畫出表格,即可得到Q的所以坐標(biāo);(2)然后由表格求得所有等可能的結(jié)果與數(shù)字x、y滿足y=﹣x+5的情況,再利用概率公式求解即可求得答案
【考點精析】利用列表法與樹狀圖法對題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學(xué)們對新詞匯的關(guān)注度,某數(shù)學(xué)興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務(wù)服務(wù)”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時代”四個熱詞在全校學(xué)生中進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位同學(xué)只能從中選擇一個我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名同學(xué)?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是(
A.BD:AB=CE:AC
B.DE:BC=AB:AD
C.AB:AC=AD:AE
D.AD:DB=AE:EC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運(yùn)用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點C的坐標(biāo),并求出△CAO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:( 1﹣20140﹣2sin30°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸、y軸分別相交于A(﹣3,0),B(0,﹣3)兩點,二次函數(shù)y=x2+mx+n的圖象經(jīng)過點A.

(1)求一次函數(shù)y=kx+b的解析式;
(2)若二次函數(shù)y=x2+mx+n圖象的頂點在直線AB上,求m,n的值;
(3)當(dāng)﹣3≤x≤0時,二次函數(shù)y=x2+mx+n的最小值為﹣4,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,Rt△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于D,OD交AC的延長線于E,OA=1,AE=3.則下列結(jié)論正確的有 . ①∠B=∠CAD;②點C是AE的中點;③ = ;④tan B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于A、B兩點,交y軸于點D,點B的坐標(biāo)為(3,0),頂點C的坐標(biāo)為(1,4).

(1)求二次函數(shù)的解析式和直線BD的解析式;
(2)點P是直線BD上的一個動點,過點P作x軸的垂線,交拋物線于點M,當(dāng)點P在第一象限時,求線段PM長度的最大值;
(3)在拋物線上是否存在異于B、D的點Q,使△BDQ中BD邊上的高為2 ?若存在求出點Q的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案