【題目】如圖,在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),滿足
(1)點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 .
(2)若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn),使,則表示的數(shù)為 .
(3)如圖,若在原點(diǎn)處放一擋板,一小球甲從點(diǎn)處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)處以2單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為(秒),
①分別表示出甲、乙兩小球到原點(diǎn)的距離(用表示);
②求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.
【答案】(1)-2、6;(2)14或;(3)①甲球與原點(diǎn)的距離為:;乙到原點(diǎn)的距離:或;②當(dāng)秒或秒時(shí),甲乙兩小球到原點(diǎn)的距離相等.
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)求得;
(2)分在線段上和線段的延長(zhǎng)線上兩種情況討論即可求解;
(3)①甲求到原點(diǎn)的距離=甲求運(yùn)動(dòng)的路程+的長(zhǎng),乙球到原點(diǎn)的距離分兩種情況:當(dāng)時(shí),乙球從點(diǎn)處開始向左運(yùn)動(dòng),一直到原點(diǎn),此時(shí)的長(zhǎng)度-乙球運(yùn)動(dòng)的路程即為乙球到原點(diǎn)的距離;當(dāng)時(shí),乙球從原點(diǎn)處開始向右運(yùn)動(dòng),此時(shí)乙球運(yùn)動(dòng)的路程-的長(zhǎng)度即為乙球到原點(diǎn)的距離;
②分兩種情況:當(dāng)時(shí)和當(dāng)時(shí),根據(jù)甲、乙兩小球到原點(diǎn)的距離相等列出關(guān)于的方程,解方程即可.
解:(1)∵,
∴,
解得,,
∴點(diǎn)表示的數(shù)為-2,點(diǎn)表示的數(shù)為6.
故填:-2、6;
(2)設(shè)數(shù)軸上點(diǎn)表示的數(shù)為,
∵,
∴,即,
∵,
∴點(diǎn)不可能在的延長(zhǎng)線上,則點(diǎn)可能在線段上和線段的延長(zhǎng)線上.
①當(dāng)點(diǎn)在線段上時(shí),則有,
得,解得;
②當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),則有,
得,解得;
故填:14或;
(3)①∵甲球運(yùn)動(dòng)的路程為:,,
∴甲球與原點(diǎn)的距離為:;
乙球到原點(diǎn)的距離分兩種情況:
當(dāng)時(shí),乙球從點(diǎn)開始向左運(yùn)動(dòng),一直到原點(diǎn),
∵,乙球運(yùn)動(dòng)的路程為:,
乙到原點(diǎn)的距離:
當(dāng)時(shí),乙球從原點(diǎn)處開始一直向右運(yùn)動(dòng),
此時(shí)乙球到原點(diǎn)的距離為:;
②當(dāng)時(shí),得,
解得;
當(dāng)時(shí),得,
解得.
故當(dāng)秒或秒時(shí),甲乙兩小球到原點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為探測(cè)某座山的高度AB,某飛機(jī)在空中C處測(cè)得山頂A處的俯角為31°,此時(shí)飛機(jī)的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達(dá)D處,測(cè)得山頂A處的俯角為50°,求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,1an50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為發(fā)展校園足球運(yùn)動(dòng),某縣城區(qū)四校決定聯(lián)合購(gòu)買一批足球運(yùn)動(dòng)裝備,市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球隊(duì)服和足球,已知每套隊(duì)服比每個(gè)足球多50元,兩套隊(duì)服與三個(gè)足球的費(fèi)用相等,經(jīng)洽談,甲商場(chǎng)優(yōu)惠方案是:每購(gòu)買十套隊(duì)服,送一個(gè)足球;乙商場(chǎng)優(yōu)惠方案是:若購(gòu)買隊(duì)服超過(guò)80套,則購(gòu)買足球打八折.
(1)求每套隊(duì)服和每個(gè)足球的價(jià)格是多少?
(2)若城區(qū)四校聯(lián)合購(gòu)買100套隊(duì)服和a個(gè)足球,請(qǐng)用含a的式子分別表示出到甲商場(chǎng)和乙商場(chǎng)購(gòu)買裝備所花的費(fèi)用;
(3)假如你是本次購(gòu)買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場(chǎng)購(gòu)買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果A、B、C三點(diǎn)在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點(diǎn),那么M,N兩點(diǎn)之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)花壇的形狀如圖所示,它的兩端是半徑相等的半圓,求:
(1)花壇的周長(zhǎng)l;
(2)花壇的面積S;
(3)若a=8m,r=5m,求此時(shí)花壇的周長(zhǎng)及面積(π取3.14).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組鄰邊相等的凸四邊形叫做“準(zhǔn)菱形”.利用該定義完成以下各題:
(1) 理解
填空:如圖1,在四邊形ABCD中,若 (填一種情況),則四邊形ABCD是“準(zhǔn)菱形”;
(2)應(yīng)用
證明:對(duì)角線相等且互相平分的“準(zhǔn)菱形”是正方形;(請(qǐng)畫出圖形,寫出已知,求證并證明)
(3) 拓展
如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準(zhǔn)菱形”,求線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某游樂(lè)園有一個(gè)滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.60)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com