精英家教網 > 初中數學 > 題目詳情

【題目】某商場欲購進果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進價和售價如下表所示。設購進果汁飲料x箱(x為正整數),且所購進的兩種飲料能全部賣出,獲得的總利潤為W元(注:總利潤=總售價-總進價)。

1)設商場購進碳酸飲料y箱,直接寫出yx的函數解析式;

2)求總利潤w關于x的函數解析式;

3)如果購進兩種飲料的總費用不超過2100元,那么該商場如何進貨才能獲利最多?并求出最大利潤。

飲料

果汁飲料

碳酸飲料

進價(元/箱)

40

25

售價(元/箱)

52

32

【答案】(1)y60x;(2w5x420;(3)該商場購進兩種飲料分別為40箱和20箱時,能獲得最大利潤620.

【解析】

(1)根據購進果汁飲料和碳酸飲料共60箱即可求解;
(2)根據總利潤=每個的利潤數量就可以表示出wx之間的關系式;
(3)由題意得40x2560x)≤2100,解得x的值,然后可求y,根據一次函數的性質可以求出進貨方案及最大利潤.

1yx的函數解析式為y60x.

2)總利潤w關于x的函數解析式為

w=(5240x+(3225)(60x)=5x420.

3)由題意得40x2560x)≤2100,解得x40

y5x420yx的增大而增大,

∴當x40時,y最大值5×40420620(元),

此時購進碳酸飲料60-40=20(箱).

∴該商場購進兩種飲料分別為40箱和20箱時,能獲得最大利潤620.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).

(1)請直接寫出B、C兩點的坐標及拋物線的解析式;

(2)過點PPEBC,交拋物線于點E,連接BE,當t為何值時,∠PBE=OCD?

(3)點Qx軸上的動點,過點PPMBQ,交CQ于點M,作PNCQ,交BQ于點N,當四邊形PMQN為正方形時,請求出t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數關系圖象如圖所示.觀察圖象,給出下列結論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解全校學生下學期參加社區(qū)活動的情況,學校隨機調查了本校50名學生參加社區(qū)活動的次數,并將調查所得的數據整理如下:

活動次數x

頻數

頻率

0<x3

10

0.20

3<x6

a

0.24

6<x9

16

0.32

9<x12

m

b

12<x15

4

0.08

15<x18

2

n

根據以上圖表信息,解答下列問題:

1)表中a=___,b=___;

2)請把頻數分布直方圖補充完整(畫圖后請標注相應的數據);

3)若該校共有1500名學生,請估計該校在下學期參加社區(qū)活動超過6次的學生有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,EOC上動點(與點O不重合),作AFBE,垂足為G,交BCF,交B0H,連接OG,CC.

(1)求證:AH=BE;

(2)試探究:∠AGO的度數是否為定值?請說明理由;

(3)OGCG,BG=,求OGC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是一組按照某種規(guī)律擺放而成的圖案,其中圖1個三角形,圖2個三角形,圖3個三角形,……,照此規(guī)律,則圖10中三角形的個數是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務:

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,EAC的中點,點A、Bx軸上.若函數 )的圖像過D、E兩點,則矩形ABCD的面積為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】老師在黑板上書寫了一個正確的演算過程,隨后用手掌捂住了一個多項式,形式如下:+(﹣3x2+5x7=2x2+3x6

1)求所捂的多項式;

2)若xx=x+3的解,求所捂多項式的值;

3)若x為正整數,x每取一個值,都可以求出所捂多項式的值,請你任取x的幾個值(不要寫在答題紙上),發(fā)現(xiàn)它們之間有一定的規(guī)律,請用含x的式子表示這一結論:____________=_____________;

4)若所捂多項式的值為729,請直接寫出x的取值.

查看答案和解析>>

同步練習冊答案