【題目】在同一坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+8x+b的圖象可能是(
A.
B.
C.
D.

【答案】C
【解析】解:x=0時,兩個函數(shù)的函數(shù)值y=b, 所以,兩個函數(shù)圖象與y軸相交于同一點,故B、D選項錯誤;
由A、C選項可知,拋物線開口方向向上,
所以,a>0,
所以,一次函數(shù)y=ax+b經(jīng)過第一三象限,
所以,A選項錯誤,C選項正確.
故選C.
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠,以及對二次函數(shù)的圖象的理解,了解二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).求:

(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將周長為10的△ABC沿BC方向平移l個單位,得到△DEF,則四邊形ABFD的周長是(
A.12
B.14
C.15
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點P、Q分別為BC、CD邊上一點,且BP=CQ=BC,連接AP、BQ交于點G,在AP的延長線上取一點E,使GE=AG,連接BE、CE.CBE的平分線BNAE于點N,連接DN,若DN=,CE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校全體同學(xué)參加了二年級劉XX同學(xué)的捐款活動,隨機抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示.

(1)本次共抽查學(xué)生      人,并將條形圖補充完整;

(2)捐款金額的眾數(shù)是      ,平均數(shù)是      

(3)在我校2200名學(xué)生中,捐款15元及以上(含15元)的學(xué)生估計有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上有點a,b,c三點

(1)用“<”將a,b,c連接起來.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|(zhì)x﹣a|+|x﹣b|的最小值為   ;

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知數(shù)軸上有三點A、B、C,AB=60,點A對應(yīng)的數(shù)是40

1,求點C到原點的距離;

2如圖2,在1的條件下,動點P、Q兩點同時從C、A出發(fā)向右運動,同時動點R從點A向左運動,已知點P的速度是點R的速度的3倍,點Q的速度是點R的速度2倍少5個單位長度/秒經(jīng)過5秒,點P、Q之間的距離與點Q、R之間的距離相等,求動點Q的速度;

3如圖3,在1的條件下,O表示原點,動點P、T分別從C、O兩點同時出發(fā)向左運動,同時動點R從點A出發(fā)向右運動,點P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運動過程中,如果點M為線段PT的中點,點N為線段OR的中點請問的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

13x=-9x-12

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BE、CF分別是ACAB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案