【題目】完成下面的證明:
已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,
證明:過(guò)點(diǎn)C作CF∥AB.
∵AB∥CF(已知),
∴∠B= ( ).
∵AB∥DE,CF∥AB( 已知 ),
∴CF∥DE ( )
∴∠2+ =180° ( )
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180° ( ).
【答案】∠1,兩直線平行,內(nèi)錯(cuò)角相等,平行于同一條直線的兩條直線平行,∠D,兩直線平行,同旁內(nèi)角互補(bǔ),等量代換.
【解析】
根據(jù)平行線的性質(zhì)得出∠B=∠1,∠2+∠D=180°,代入求出即可.
證明:過(guò)點(diǎn)C作CF∥AB,
∵AB∥CF(已知),
∴∠B=∠1(兩直線平行,內(nèi)錯(cuò)角相等),
∵AB∥DE,CF∥AB(已知),
∴CF∥DE (平行于同一條直線的兩條直線平行),
∴∠2+∠D=180° (兩直線平行,同旁內(nèi)角互補(bǔ)),
∵∠2=∠BCD-∠1,
∴∠D+∠BCD-∠B=180° (等量代換),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知k為實(shí)數(shù),關(guān)于x的一元二次方程(k+3)x-2(k+2)x+k=0有兩個(gè)不相等的實(shí)數(shù)根。試判斷關(guān)于x的方程(k-1)x-(2k+1)x+k=0 的根的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC.
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】祥云橋位于省城太原南部,該橋塔主體由三根曲線塔柱組合而成,全橋共設(shè)13對(duì)直線型斜拉索,造型新穎,是“三晉大地”的一種象征.某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測(cè)量斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測(cè)量.測(cè)量結(jié)果如下表.
項(xiàng)目 | 內(nèi)容 | ||
課題 | 測(cè)量斜拉索頂端到橋面的距離 | ||
測(cè)量示意圖 | 說(shuō)明:兩側(cè)最長(zhǎng)斜拉索AC,BC相交于點(diǎn)C,分別與橋面交于A,B兩點(diǎn),且點(diǎn)A,B,C在同一豎直平面內(nèi). | ||
測(cè)量數(shù)據(jù) | ∠A的度數(shù) | ∠B的度數(shù) | AB的長(zhǎng)度 |
38° | 28° | 234米 | |
… | … |
(1)請(qǐng)幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求斜拉索頂端點(diǎn)C到AB的距離(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
(2)該小組要寫(xiě)出一份完整的課題活動(dòng)報(bào)告,除上表的項(xiàng)目外,你認(rèn)為還需要補(bǔ)充哪些項(xiàng)目(寫(xiě)出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖,拋物線y=與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,過(guò)點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,PM交BC于點(diǎn)Q,過(guò)點(diǎn)P作PE∥AC交x軸于點(diǎn)E,交BC于點(diǎn)F.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)試探究在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)請(qǐng)用含m的代數(shù)式表示線段QF的長(zhǎng),并求出m為何值時(shí)QF有最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校260名學(xué)生參加植樹(shù)活動(dòng),要求每人植樹(shù)4﹣7顆,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹(shù)數(shù)量,并分為四種類(lèi)型,A:4顆;B:5顆;C:6顆;D:7顆.將各類(lèi)的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.
回答下列問(wèn)題:
(1)寫(xiě)出條形圖中存在的錯(cuò)誤,并說(shuō)明理由;
(2)寫(xiě)出這20名學(xué)生每人植樹(shù)量的眾數(shù)和中位數(shù);
(3)求這20名學(xué)生每人植樹(shù)量的平均數(shù),并估計(jì)這260名學(xué)生共植樹(shù)多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市正在開(kāi)展“食品安全城市”創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類(lèi)分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為 ;
(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有800名學(xué)生,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(α,0)、B(b,0),點(diǎn)C在y軸上,且由|a+4|+(b-2)2=0.
(1)若S△ABC=6,求C點(diǎn)的坐標(biāo);
(2)將C向右平移,使OC平分∠ACB,點(diǎn)P是x軸上B點(diǎn)右邊的一動(dòng)點(diǎn),PQ⊥OC于Q點(diǎn).當(dāng)∠ABC-∠BAC=60°時(shí),求∠APQ的度數(shù);
(3)在(2)的條件下,將線段AC平移,使其經(jīng)過(guò)P點(diǎn)得線段EF,作∠APE的角平分線交OC的延長(zhǎng)線于點(diǎn)M.當(dāng)P點(diǎn)在x軸上運(yùn)動(dòng)時(shí),求∠M-∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過(guò)B,C向經(jīng)過(guò)點(diǎn)A的直線EF作垂線,垂足為E,F.
(1)如圖1,當(dāng)EF與斜邊BC不相交時(shí),請(qǐng)證明EF=BE+CF;
(2)如圖2,當(dāng)EF與斜邊BC相交時(shí),其他條件不變,寫(xiě)出EF、BE、CF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,猜想EF、BE、CF之間又存在怎樣的數(shù)量關(guān)系,寫(xiě)出猜想,不必說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com