【題目】如圖①,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F.

(1)請(qǐng)你判斷并寫(xiě)出FE與FD之間的數(shù)量關(guān)系(不需證明);

(2)如圖②,如果∠ACB不是直角,其他條件不變,那么在(1)中所得的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

【答案】(1)FE=FD (2)答案見(jiàn)解析

【解析】

(1)先在AC上截取AG=AE,連結(jié)FG,利用SAS判定AEF≌△AGF,得出∠AFE=AFG,F(xiàn)E=FG,再利用ASA判定CFG≌△CFD,得到FG=FD,進(jìn)而得出FE=FD;

(2)先過(guò)點(diǎn)F分別作FGAB于點(diǎn)G,F(xiàn)HBC于點(diǎn)H,則∠FGE=FHD=90°,根據(jù)已知條件得到∠GEF=HDF,進(jìn)而判定EGF≌△DHF(AAS),即可得出FE=FD.也可以過(guò)點(diǎn)FFGABG,作FHBCH,作FKACK,再判定EFG≌△DFH(ASA),進(jìn)而得出FE=FD.

(1)FEFD之間的數(shù)量關(guān)系為:FE=FD.

理由:如圖,在AC上截取AG=AE,連結(jié)FG,

AD是∠BAC的平分線,

∴∠1=2,

AEFAGF

,

∴△AEF≌△AGF(SAS),

∴∠AFE=AFG,F(xiàn)E=FG,

∵∠B=60°,AD,CE分別是∠BAC,BCA的平分線,

22+23+B=180°,

∴∠2+3=60°,

又∵∠AFEAFC的外角,

∴∠AFE=CFD=AFG=2+3=60°,

∴∠CFG=180°-60°-60°=60°

∴∠GFC=DFC,

CFGCFD中,

,

∴△CFG≌△CFD(ASA),

FG=FD,

FE=FD;

(2)結(jié)論FE=FD仍然成立.

如圖,過(guò)點(diǎn)F分別作FGAB于點(diǎn)G,F(xiàn)HBC于點(diǎn)H,則∠FGE=FHD=90°,

∵∠B=60°,且AD,CE分別是∠BAC,BCA的平分線,

∴∠2+3=60°,F(xiàn)ABC的內(nèi)心,

∴∠GEF=BAC+3=1+2+3=60°+1,

FABC的內(nèi)心,即F在∠ABC的角平分線上,

FG=FH,

又∵∠HDF=B+1=60°+1,

∴∠GEF=HDF,

EGFDHF中,

,

∴△EGF≌△DHF(AAS),

FE=FD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,,點(diǎn)在邊上,且.將沿對(duì)折至,延長(zhǎng)交邊于點(diǎn).連結(jié)、.下列結(jié)論:①;②;③是正三角形;④的面積為90.其中正確的是______(填所有正確答案的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,于點(diǎn),于點(diǎn),則圖中全等三角形的對(duì)數(shù)有______對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市為了答謝顧客,凡在本超市購(gòu)物的顧客,均可憑購(gòu)物小票參與抽獎(jiǎng)活動(dòng),獎(jiǎng)品是三種瓶裝飲料,它們分別是:綠茶(500ml)、紅茶(500ml)和可樂(lè)(600ml),抽獎(jiǎng)規(guī)則如下:①如圖,是一個(gè)材質(zhì)均勻可自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)被等分成五個(gè)扇形區(qū)域,每個(gè)區(qū)域上分別寫(xiě)有“可”、“綠”、“樂(lè)”、“茶”、“紅”字樣;②參與一次抽獎(jiǎng)活動(dòng)的顧客可進(jìn)行兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”(當(dāng)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,可獲得指針?biāo)竻^(qū)域的字樣,我們稱這次轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”);③假設(shè)顧客轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),直到轉(zhuǎn)動(dòng)為一次“有效隨機(jī)轉(zhuǎn)動(dòng)”;④當(dāng)顧客完成一次抽獎(jiǎng)活動(dòng)后,記下兩次指針?biāo)竻^(qū)域的兩個(gè)字,只要這兩個(gè)字和獎(jiǎng)品名稱的兩個(gè)字相同(與字的順序無(wú)關(guān)),便可獲得相應(yīng)獎(jiǎng)品一瓶;不相同時(shí),不能獲得任何獎(jiǎng)品.

根據(jù)以上規(guī)則,回答下列問(wèn)題:

(1)求一次“有效隨機(jī)轉(zhuǎn)動(dòng)”可獲得“樂(lè)”字的概率;

(2)有一名顧客憑本超市的購(gòu)物小票,參與了一次抽獎(jiǎng)活動(dòng),請(qǐng)你用列表或樹(shù)狀圖等方法,求該顧客經(jīng)過(guò)兩次“有效隨機(jī)轉(zhuǎn)動(dòng)”后,獲得一瓶可樂(lè)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將連續(xù)的偶數(shù)2,46,8,,如圖所示排列:

(1)求圖中十字框內(nèi)5個(gè)數(shù)的和與中間的數(shù)16的倍數(shù)關(guān)系.

(2)若將十字框上下左右移動(dòng),可框住另外的五個(gè)數(shù),請(qǐng)說(shuō)明這五個(gè)數(shù)的和與十字框最中間的數(shù)之間存在的關(guān)系.

(3)若將十字框上下左右移動(dòng),框住的五個(gè)數(shù)的和能等于2019嗎?若能,請(qǐng)寫(xiě)出這五個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題

學(xué)校給七年級(jí)學(xué)生組織知識(shí)競(jìng)賽,共設(shè)20道題,各題的分值相同,每題必答.下表記錄了5名學(xué)生的得分情況

參賽者

答對(duì)題數(shù)

答錯(cuò)題數(shù)

得分

小明

10

10

40

小紅

19

1

94

小剛

20

0

100

小強(qiáng)

18

2

88

小麗

14

6

64

(1)參賽者小芳得76分,她答對(duì)了幾道題?

(2)參賽者小花說(shuō)她得了83分,你認(rèn)為可能嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)參加1 000米比賽,由于參賽選手較多,將選手隨機(jī)分AB、C三組進(jìn)行比賽

1)甲同學(xué)恰好在A組的概率是________;

2求甲、乙兩人至少有一人在B組的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB、CD 是圓O 的兩條直徑,且∠AOD =α0° < α < 90°),點(diǎn)P是扇形AOD內(nèi)任意一點(diǎn).點(diǎn)PAB、CD所在直線依次輪流作為對(duì)稱軸翻折,將點(diǎn)P關(guān)于AB對(duì)稱的點(diǎn)記為點(diǎn)P1 ,點(diǎn)P1關(guān)CD 對(duì)稱的點(diǎn)記為點(diǎn)P2,點(diǎn) P2 關(guān)于AB 對(duì)稱的點(diǎn)記為點(diǎn)P3,….

1)根據(jù)所給圖中點(diǎn)P 的位置,分別畫(huà)出點(diǎn) P 1、P 1;(不寫(xiě)作圖步驟,但要保留作圖痕跡)

2)分別聯(lián)結(jié)OP、OP1OP2,那么線段OPOP1、OP2 之間的數(shù)量關(guān)系是:OP OP1 OP2(填空,不要求寫(xiě)出過(guò)程);

3)由(1)、(2)可知,點(diǎn) P 繞點(diǎn)O旋轉(zhuǎn)可以到達(dá)點(diǎn)P2的位置,如果 α=60°OP= a,求線段 OP順時(shí)針旋轉(zhuǎn)到OP2 過(guò)程中掃過(guò)的面積;

4)在 α 取某些特定值的時(shí)候,如果按照這樣的方式翻折,總能得到一點(diǎn)Pn與點(diǎn)P 重合, 求當(dāng)n =12,點(diǎn) P12 與點(diǎn)P 第一次重合時(shí) α 的值.(直接寫(xiě)出結(jié)果,不要求寫(xiě)出過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案