【題目】如圖,已知正方形ABCD的邊長為4 cm,點E從點A出發(fā),以1cm/s的速度沿著折線A→B→C運動,到達點C時停止運動;點F從點B出發(fā),也以1cm/s的速度沿著折線B→C→D運動,到達點D時停止運動.點E、F分別從點A、B同時出發(fā),設(shè)運動時間為t(s).
(1)當(dāng)t為何值時,E、F兩點間的距離為2cm;
(2)連接DE、AF交于點M,
①在整個運動過程中,CM的最小值為 cm;
②當(dāng)CM=4 cm時,此時t的值為 .
【答案】(1)t1=2+,t2=2-; t3=6+,t4=6-. (2)① 2-2;② 2或8.
【解析】
(1)分情況討論確定E,F的位置,根據(jù)勾股定理求值;
(2)①根據(jù)題意分析出點M的運動軌跡是圓,然后根據(jù)兩點之間線段最短確定最小值;
②求證△DAM≌△CDN,△DAE∽△DMA,分情況討論求解.
(1) 解:當(dāng)E、F兩點分別在AB、BC上時,
則AE= t,EB=4-t,BF= t
∵EB2+BF2=EF2
∴t2+(4-t)2=(2)2
∴ t1=2+,t2=2-.
當(dāng)E、F兩點分別在BC、CD上時,
則CE=8-t,EB=t-4
∵CE2+CF2=EF2
∴(8-t)2+(t-4)2=(2)2
∴ t1=6+,t2=6-.
(2)
∵E,F兩點速度相同,∴AE=BF
又∵正方形ABCD中,AD=BA,∠DAB=∠B=90°,
∴△DAE≌△ABF,
∴∠ADE=∠BAF
∴∠ADE+DAF=90°,即∠AMD=90°
所以點M在以O(shè)為圓心,AD為直徑的圓上,連接OC交圓O于點M1,此時CM長度最短,在Rt△DOC中,CO=
所以CM的最小值為 cm;
②
如圖,過點C作CN⊥DE,由題意易證:△DAM≌△CDN,∴DN=AM,又∵CM=CD=4,且CN⊥DE,∴DM=2AM,即
由上一問可知:∠AMD=90°,∴∠DAE=∠AMD,∠ADM=∠EDA
∴△DAE∽△DMA
∴
∴t=AE=2,
當(dāng)點E到達點C,點F到達點D,此時AM=4,此時t=8,
綜上,當(dāng)CM=4 cm時,此時t的值為2或8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閨蜜裝在大學(xué)校園里盛行,閨蜜裝能很好的表達“親如姐妹”的友誼,也能成為校園一道靚麗的風(fēng)景.某專賣店購進一批,兩款閨蜜裝,共花費了18400元,款比款多20套,其中每套款閨蜜裝進價200元,每套款閨蜜裝進價160元.進行試銷售,供不應(yīng)求,很快銷售完畢,己知每套款閨蜜裝售價為240元.
(1)求購進,兩款閨蜜裝各多少套?
(2)國慶將至,專賣店又購進第二批,兩款閨蜜裝并進行促銷活動,在促銷期間,每套款閨蜜裝在進價的基礎(chǔ)上提高銷售,每套款閨蜜裝在第一批售價的基礎(chǔ)上降低銷售,結(jié)果在促銷售活動中,款閨蜜裝的銷量比第一批款銷售量降低了,款閨蜜裝的銷售量比第一批款銷售量上升了,結(jié)果本次促銷活動共獲利5200元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績?nèi)鐖D所示.
(1)甲射擊成績的眾數(shù)為 環(huán),乙射擊成績的中位數(shù)為 環(huán);
(2)計算兩人射擊成績的方差;
(3)根據(jù)訓(xùn)練成績,你認(rèn)為選派哪一名隊員參賽更好,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,O到定點A的距離為5,點B在⊙O上,點P是線段AB的中點.若B在⊙O上運動一周:
(1)證明點P運動的路徑是一個圓.
(思路引導(dǎo):要證點P運動的路徑是一個圓,只要證點P到定點M的距離等于定長r,由圖中的定點、定長可以發(fā)現(xiàn)M、r.)
(2)△ABC始終是一個等邊三角形,直接寫出PC長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時,水面寬AB為12m.當(dāng)水面上升6m時達到警戒水位,此時拱橋內(nèi)的水面寬度是多少m?
下面給出了解決這個問題的兩種方法,請補充完整:
方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,
此時點B的坐標(biāo)為( , ),拋物線的頂點坐標(biāo)為( , ),
可求這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y=6時,求出此時自變量x的取值,即可解決這個問題.
方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標(biāo)系xOy,
這時這條拋物線所表示的二次函數(shù)的解析式為 .
當(dāng)y= 時,求出此時自變量x的取值為 ,即可解決這個問題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com