【題目】1)如圖1,在RtABC 中, ,D、E是斜邊BC上兩動點,且∠DAE=45°,將△繞點逆時針旋轉(zhuǎn)90后,得到△,連接.

1)試說明:△≌△

(2)當BE=3,CE=9時,求∠BCF的度數(shù)和DE的長; 

3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點,BD=3,BC=8,求DE2的長.

【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130

【解析】試題分析: 得到 從而得到

由△得到,再證明利用勾股定理即可得出結(jié)論.

過點,根據(jù)等腰三角形三線合一得, 求出的長,即可求得.

試題解析:

中,

解得:

過點,根據(jù)等腰三角形三線合一得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】9 的算術平方根是( )

A.3B.3C.±3D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個小球向斜上方拋出,它的行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=﹣x2+4x+1,則小球能到達的最大高度是m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“x5倍與y的和可以表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是( )
A.(x﹣6)2=﹣4+36
B.(x﹣6)2=4+36
C.(x﹣3)2=﹣4+9
D.(x﹣3)2=4+9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自我國實施限塑令起,開始有償使用環(huán)保購物袋,為了滿足市場需求,某廠家生產(chǎn)A、B兩種款式的布質(zhì)環(huán)保購物袋,每天生產(chǎn)4500個,兩種購物袋的成本和售價如下表,若設每天生產(chǎn)A種購物袋 x

1)用含x的整式表示每天的生產(chǎn)成本,并進行化簡;

2)用含x的整式表示每天獲得的利潤,并進行化簡(利潤=售價-成本);

3)當x1500時,求每天的生產(chǎn)成本與每天獲得的利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)有一點D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )

A. 100° B. 80° C. 70° D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動手操作:請按要求作圖.(規(guī)范作圖,保留作圖痕跡即可,不要求尺規(guī)作圖)

)如圖(),內(nèi)一定點, 為射線邊上一定點,請在射線上找一點,使得最。

)如圖(),內(nèi)一定點,點分別為射線、邊上兩個動點,請作出使得最小的點和點.

)如圖(),內(nèi)一定點,點、分別為射線、邊上兩個動點,請作出使得最小的點和點.

拓展應用:

)如圖(),為銳角三角形, , 的面積為,點、、分別為三邊、上的三個動點,請在圖中作出滿足條件的周長最小的,并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)

查看答案和解析>>

同步練習冊答案