【題目】如圖是二次函數(shù)y=ax2+bx+c圖像的一部分,其對稱軸是直線x=-1,且過點(-3,0),下列說法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是拋物在線兩點,則y1>y2,其中正確的是( )
A.② B.②③ C.②④ D.①②
【答案】C.
【解析】
試題∵二次函數(shù)的圖象開口向上,
∴a>0,
∵二次函數(shù)的圖象交y軸的負半軸于一點,
∴c<0,
∵對稱軸是中線x=-1,
∴-=-1,
∴b=2a>0,
∴abc<0,
∴①錯誤;
∵b=2a,
∴2a-b=0,
∴②正確;
把x=2代入y=ax2+bx+c得:y=4a+2b+c,
從圖象可知,當(dāng)x=2時y<0,
即4a+2b+c<0,
∴③錯誤;
∵(-5,y1)關(guān)于直線x=-1的對稱點的坐標是(3,y1),
又∵當(dāng)x>-1時,y隨x的增大而增大,3<5,
∴y1>y2,
∴④正確;
即正確的有2個②④.
故選:C.
考點: 二次函數(shù)圖象與系數(shù)的關(guān)系.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:
(1)ctan30°= ;
(2)如圖,已知tanA=,其中∠A為銳角,試求ctanA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b<的x的取值范圍;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為“環(huán)廣西公路自行車世界巡回賽”的專題調(diào)查活動,取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)請求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計圖補充完整.
(2)估計該校1500名學(xué)生中“C等級”的學(xué)生有多少人?
(3)在“B等級”的學(xué)生中,初三學(xué)生共有4人,其中1男3女,在這4個人中,隨機選出2人進行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經(jīng)過等腰梯形的四個頂點.
圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關(guān)系,并給以證明;
圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線的函數(shù)解析式為,與軸交于點,與軸交于點.
(1)直接寫出點的坐標________;點的坐標________;
(2)若點為線段上的一個動點,作軸于點,軸于點,連接,問:①若的面積為,求關(guān)于的函數(shù)關(guān)系式;②直接寫出的最小值________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2﹣4x+c經(jīng)過點A(0,﹣6)和B(3,﹣9).
(1)求出拋物線的解析式;
(2)寫出拋物線的對稱軸方程及頂點坐標;
(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Q的坐標;
(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得△QMA的周長最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com