【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.

【答案】
(1)解:∵OA=OC,

∴∠A=∠ACO,

∴∠COD=∠A+∠ACO=2∠A,

∵∠D=2∠A,

∴∠D=∠COD,

∵PD切⊙O于C,

∴∠OCD=90°,

∴∠D=∠COD=45°


(2)解:∵∠D=∠COD,CD=2,

∴OC=OB=CD=2,

在Rt△OCD中,由勾股定理得:22+22=(2+BD)2

解得:BD=2 ﹣2.


【解析】(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.
【考點(diǎn)精析】利用切線的性質(zhì)定理對題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸只有一個交點(diǎn)A(﹣2,0),與y軸交于點(diǎn)B(0,4).

(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)過點(diǎn)B作平行于x軸的直線交拋物線與點(diǎn)C.
①若點(diǎn)M在拋物線的AB段(不含A、B兩點(diǎn))上,求四邊形BMAC面積最大時,點(diǎn)M的坐標(biāo);
②在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)P,使以P、A、B、C為頂點(diǎn)的四邊形是平行四邊形,若存在直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+4ax+b與x軸相交于O、A兩點(diǎn)(其中O為坐標(biāo)原點(diǎn)),過點(diǎn)P(2,2a)作直線PM⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B,點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(其中B、C不重合),連接AP交y軸于點(diǎn)N,連接BC和PC.
(1)a= 時,求拋物線的解析式和BC的長;
(2)如圖a<﹣1時,若AP⊥PC,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知式子M=(a+5)x3+7x2﹣2x+5是關(guān)于x的二次多項式,且二次項系數(shù)為b,數(shù)軸上A、B兩點(diǎn)所對應(yīng)的數(shù)分別是ab.

(1)a=   ,b=   .A、B兩點(diǎn)之間的距離=   ;

(2)有一動點(diǎn)P從點(diǎn)A出發(fā)第一次向左運(yùn)動1個單位長度,然后在新的位置第二次運(yùn)動,向右運(yùn)動2個單位長度,在此位置第三次運(yùn)動,向左運(yùn)動3個單位長度…按照如此規(guī)律不斷地左右運(yùn)動,當(dāng)運(yùn)動到2015次時,求點(diǎn)P所對應(yīng)的有理數(shù).

(3)在(2)的條件下,點(diǎn)P會不會在某次運(yùn)動時恰好到達(dá)某一位置,使點(diǎn)P到點(diǎn)B的距離是點(diǎn)P到點(diǎn)A的距離的3倍?若可能請求出此時點(diǎn)P的位置,并直接指出是第幾次運(yùn)動,若不可能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖像交于A(1,12)和B(6,2)兩點(diǎn).點(diǎn)P是線段AB上一動點(diǎn)(不與點(diǎn)A和B重合),過P點(diǎn)分別作x、y軸的垂線PC、PD交反比例函數(shù)圖像于點(diǎn)M、N,則四邊形PMON面積的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)﹣7﹣5.

(2)(﹣15)﹣(﹣9)

(3)(﹣5)×(﹣7)+20÷(﹣4)

(4)()×(﹣36)

(5)﹣81÷×÷(﹣16)

(6)5﹣(﹣2)+(﹣3)﹣(+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是不倒翁的正視圖,不倒翁的圓形臉恰好與帽子邊沿PA、PB分別相切于點(diǎn)A、B,不倒翁的鼻尖正好是圓心O,若∠OAB=25°,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC有兩邊在坐標(biāo)軸的正半軸上,如圖所示,雙曲線y= 與邊AB、BC分別交于D、E兩點(diǎn),OE交雙曲線y= 于點(diǎn)G,若DG∥OA,OA=3,則CE的長為(
A.
B.1.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案