【題目】如圖,在長方形ABCD中,AB=6,BC=8.
(1)求對角線AC的長;
(2)點(diǎn)E是線段CD上的一點(diǎn),把△ADE沿著直線AE折疊.點(diǎn)D恰好落在線段AC上,與點(diǎn)F重合,求線段DE的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, △ABC是直角三角形,∠A=90°,D是斜邊BC的中點(diǎn),E,F分別是AB,AC邊上的動點(diǎn),且DE⊥DF.
(1)如圖(1),連接AD,若AB=AC=17,CF=5,求線段EF的長.
(2)如圖(2),若AB≠AC,寫出線段EF與線段BE,CF之間的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的兩點(diǎn)A、B,與y軸交于C點(diǎn).過點(diǎn)A作AD⊥y軸,垂足為點(diǎn)D,AD=8,OC=2,tan∠ACD=2.點(diǎn)B的坐標(biāo)為(m,﹣4).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x取何值時(shí),ax+b﹣>0成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價(jià)格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運(yùn)輸?shù)雀鞣N費(fèi)用(不含生產(chǎn)成本)總計(jì)50萬元,其銷售量y(萬個)與銷售價(jià)格(元/個)的函數(shù)關(guān)系如圖所示.
(1)當(dāng)30≤x≤60時(shí),求y與x的函數(shù)關(guān)系式;
(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價(jià)格x(元/個)的函數(shù)關(guān)系式;
(3)銷售價(jià)格應(yīng)定為多少元時(shí),獲得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數(shù)為( 。
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準(zhǔn)互余三角形”.
(1)若△ABC是“準(zhǔn)互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準(zhǔn)互余三角形”.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得△ABE也是“準(zhǔn)互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準(zhǔn)互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com