【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把EBF沿EF折疊,點(diǎn)B落在B′處.若CDB′恰為等腰三角形,則DB′的長(zhǎng)為_____

【答案】16或4

【解析】試題分析:(1)當(dāng)B′D=B′C時(shí),過(guò)B′點(diǎn)作GH∥AD,則∠B′GE=90°,當(dāng)B′C=B′D時(shí),AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性質(zhì),得B′E=BE=13∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===;

2)當(dāng)DB′=CD時(shí),則DB′=16(易知點(diǎn)FBC上且不與點(diǎn)C、B重合);

3)當(dāng)CB′=CD時(shí),∵EB=EB′,CB=CB′,點(diǎn)ECBB′的垂直平分線上,∴EC垂直平分BB′,由折疊可知點(diǎn)F與點(diǎn)C重合,不符合題意,舍去.

綜上所述,DB′的長(zhǎng)為16.故答案為:16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016湖北省黃岡市)如圖,已知點(diǎn)A1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B

1)求直線AB的解析式;

2)動(dòng)點(diǎn)Px,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

【答案】1y=x4;(2P4,0).

【解析】試題分析:(1)先把A1,a)代入反比例函數(shù)解析式求出a得到A點(diǎn)坐標(biāo),再解方程組,得B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求AB的解析式;

2)直線ABx軸于點(diǎn)Q,如圖,利用x軸上點(diǎn)的坐標(biāo)特征得到Q點(diǎn)坐標(biāo),則PA﹣PB≤AB(當(dāng)PA、B共線時(shí)取等號(hào)),于是可判斷當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,從而得到P點(diǎn)坐標(biāo).

試題解析:(1)把A1,a)代入a=﹣3,則A1,﹣3),解方程組: ,得: ,則B3,﹣1),設(shè)直線AB的解析式為y=kx+b,把A1,﹣3),B3,﹣1)代入得: ,解得: ,所以直線AB的解析式為y=x﹣4;

2)直線ABx軸于點(diǎn)Q,如圖,當(dāng)y=0時(shí),x﹣4=0,解得x=4,則Q4,0),因?yàn)?/span>PA﹣PB≤AB(當(dāng)PA、B共線時(shí)取等號(hào)),所以當(dāng)P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)時(shí),線段PA與線段PB之差達(dá)到最大,此時(shí)P點(diǎn)坐標(biāo)為(4,0).

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

型】解答
結(jié)束】
22

【題目】成都三圣鄉(xiāng)花卉基地出售兩種盆栽花卉:太陽(yáng)花6/盆,繡球花10/盆.若一次購(gòu)買的繡球花超過(guò)20盆時(shí),超過(guò)20盆部分的繡球花價(jià)格打8折.

(1)若小張家花臺(tái)綠化需用60盆兩種盆栽花卉,小張爸爸給他460元錢去購(gòu)買,問(wèn)兩種花卉各買了多少盆?

(2)分別寫出兩種花卉的付款金額y(元)關(guān)于購(gòu)買量x(盆)的函數(shù)解析式;

(3)為了美化環(huán)境,花園小區(qū)計(jì)劃到該基地購(gòu)買這兩種花卉共90盆,其中太陽(yáng)花數(shù)量不超過(guò)繡球花數(shù)量的一半.兩種花卉各買多少盆時(shí),總費(fèi)用最少,最少費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)E,點(diǎn)FBD上,且 BEDF 連接AE并延長(zhǎng),交BC于點(diǎn)G,連接CF并延長(zhǎng),交AD于點(diǎn)H

(1)求證:△AOE≌△COF;

(2)AC平分∠HAG,求證:四邊形AGCH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程(組)

12x13+16=0

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上的AB兩點(diǎn)所表示的數(shù)分別為a、bab0,ab0

1)原點(diǎn)O的位置在

A.點(diǎn)A的右邊

B.點(diǎn)B的左邊

C.點(diǎn)A與點(diǎn)B之間 ,且靠近點(diǎn)A

D.點(diǎn)A與點(diǎn)B之間 ,且靠近點(diǎn)B

2)若ab2,

①利用數(shù)軸比較大小,a 1,b 1;(填“>”、“<”或“=”).

②化簡(jiǎn):|a1|+|b1|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過(guò)點(diǎn)A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過(guò)點(diǎn)B,且ABx軸.

(1)求a和k的值;

(2)過(guò)點(diǎn)B作MNOA,交x軸于點(diǎn)M,交y軸于點(diǎn)N,交雙曲線y=于另一點(diǎn)C,求OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中∠C=90°,BAC=30°AB=8,以2為邊長(zhǎng)的正方形DEFG的一邊GD在直線AB上,且點(diǎn)D與點(diǎn)A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)D與點(diǎn)B重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過(guò)程中,正方形DEFGABC的重合部分的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明過(guò)程:

如圖,ABCDADBC,BE平分∠ABC,DF平分∠ADC

求證:BEDF

證明:∵ABCD,(已知)

∴∠ABC+∠C180°.(   

又∵ADBC,(已知)

   +∠C180°.(   

∴∠ABC=∠ADC.(   

BE平分∠ABC,(已知)

∴∠1ABC.(   

同理,∠2ADC

   =∠2

ADBC,(已知)

∴∠2=∠3.(   

∴∠1=∠3

BEDF.(   

查看答案和解析>>

同步練習(xí)冊(cè)答案