【題目】已知a+b0,b0,則下列結(jié)論:ab0;|a||b|;ab0bab+a,正確的是( 。

A. ①②B. ②③C. ③④D. ①④

【答案】C

【解析】

由于a+b0b0,依據(jù)異號(hào)兩數(shù)相加的運(yùn)算法則得出a0,且|a||b|,據(jù)此可判斷,再根據(jù)乘法法則和加減運(yùn)算法則可判斷

解:∵a+b0,b0,

a0,且|a||b|,故錯(cuò)誤;錯(cuò)誤;

a0,b0ab0,正確;

ba0,b+a0,

bab+a,正確;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從五邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線,把這個(gè)五邊形分成( )個(gè)三角形.

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售個(gè);若銷售單價(jià)每降低元,每天可多售出個(gè).已知每個(gè)玩具的固定成本為元,問(wèn)這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價(jià)為每個(gè)30元.市場(chǎng)調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個(gè))與銷售單價(jià)x(單位:元)有如下關(guān)系:y=-x+60(30≤x≤60).

設(shè)這種雙肩包每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)解析式;

(2)這種雙肩包銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門規(guī)定這種雙肩包的銷售單價(jià)不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各式由左邊到右邊的變形中,屬于分解因式的是(
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+6x=(x+4)(x﹣4)+6x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列哪個(gè)選項(xiàng)的點(diǎn)在第二象限

A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與x軸,y軸分別相交于M(4,0),N(0,3)兩點(diǎn).已知拋物線開口向上,與C交于N,H,P三點(diǎn),P為拋物線的頂點(diǎn),拋物線的對(duì)稱軸經(jīng)過(guò)點(diǎn)C且垂直x軸于點(diǎn)D.

(1)求線段CD的長(zhǎng)及頂點(diǎn)P的坐標(biāo);

(2)求拋物線的函數(shù)表達(dá)式;

(3)設(shè)拋物線交x軸于A,B兩點(diǎn),在拋物線上是否存在點(diǎn)Q,使得S四邊形OPMN=8SQAB,且QAB∽△OBN成立?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),后求值:a2a4﹣a8÷a2+(a32 , 其中a=﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖案中是中心對(duì)稱圖形但不是軸對(duì)稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案