【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論: ①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4;
④2AB=3AC;
其中正確結(jié)論是( )
A.①②
B.②③
C.③④
D.①④
【答案】D
【解析】解:①∵拋物線y2= (x﹣3)2+1開口向上,頂點(diǎn)坐標(biāo)在x軸的上方,∴無論x取何值,y2的值總是正數(shù),故本小題正確; ②把A(1,3)代入,拋物線y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a= ,故本小題錯(cuò)誤;
② 由兩函數(shù)圖象可知,拋物線y1=a(x+2)2﹣3解析式為y1= (x+2)2﹣3,當(dāng)x=0時(shí),y1= (0+2)2﹣3=﹣ ,y2= (0﹣3)2+1= ,故y2﹣y1= + = ,故本小題錯(cuò)誤;
③ 物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點(diǎn)A(1,3),
∴y1的對稱軸為x=﹣2,y2的對稱軸為x=3,
∴B(﹣5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本小題正確.
故選D.
根據(jù)與y2= (x﹣3)2+1的圖象在x軸上方即可得出y2的取值范圍;把A(1,3)代入拋物線y1=a(x+2)2﹣3即可得出a的值;由拋物線與y軸的交點(diǎn)求出,y2﹣y1的值;根據(jù)兩函數(shù)的解析式直接得出AB與AC的關(guān)系即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)相同,開口大小相同,但開口方向相反,則稱這兩個(gè)二次函數(shù)為“對稱二次函數(shù)”.
(1)請寫出二次函數(shù)y=2(x﹣2)2+1的“對稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對稱二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3≤x≤3時(shí),y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天,小明和小芳從同一小區(qū)門口同時(shí)出發(fā),沿同一路線去離該小區(qū)1800米的少年宮參加活動,為響應(yīng)“節(jié)能環(huán)保,綠色出行”的號召,兩人都步行,已知小明的速度是小芳的速度的1.2倍,結(jié)果小明比小芳早6分鐘到達(dá),求小芳的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( )
A.88°
B.92°
C.106°
D.136°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
(3)在(2)的條件下,直接寫出tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A開始,沿AB邊以1cm/s的速度向點(diǎn)B運(yùn)動:點(diǎn)Q從點(diǎn)B開始,沿BC邊以2cm/s的速度向點(diǎn)C運(yùn)動,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)B時(shí),運(yùn)動停止,如果P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā).
(1)幾秒后△PBQ的面積等于8cm2?
(2)幾秒后以P,B,Q為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CD⊥AB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長線交于點(diǎn)E,且∠E=∠ACF. 求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于點(diǎn)D,CE⊥AB于點(diǎn)E,BD,CE交于點(diǎn)O,F(xiàn)為BC的中點(diǎn),連接EF,DF,DE,則下列結(jié)論:①EF=DF;②ADAC=AEAB;③△DOE∽△COB;④若∠ABC=45°時(shí),BE= FC. 其中正確的是(把所有正確結(jié)論的序號都選上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com