【題目】甲、乙兩家超市同價銷售同一款可拆分式驅(qū)蚊器,1套驅(qū)蚊器由1個加熱器和1瓶電熱蚊香液組成.電熱蚊香液作為易耗品可單獨購買,1瓶電熱蚊香液的售價是1套驅(qū)蚊器的.已知電熱蚊香液的利潤率為20%,整套驅(qū)蚊器的利潤率為25%.張阿姨從甲超市買了1套這樣的驅(qū)蚊器,并另外買了4瓶電熱蚊香液,超市從中共獲利10元.

(1)求1套驅(qū)蚊器和1瓶電熱蚊香液的售價;

(2)為了促進該款驅(qū)蚊器的銷售,甲超市打8.5折銷售,而乙超市采用的銷售方法是顧客每買1套驅(qū)蚊器送1瓶電熱蚊香液.在這段促銷期間,甲超市銷售2000套驅(qū)蚊器,而乙超市在驅(qū)蚊器銷售上獲得的利潤不低于甲超市的1.2倍.問乙超市至少銷售多少套驅(qū)蚊器?

【答案】(1)、驅(qū)蚊器售價30元,電熱蚊香液的售價6元;(2)、3600

【解析】

試題分析:(1)、設(shè)1套驅(qū)蚊器售價5x元,1瓶電熱蚊香液的售價x元,根據(jù)題意列出方程解答即可;

(2)、設(shè)乙超市銷售x套驅(qū)蚊器,根據(jù)乙超市在驅(qū)蚊器銷售上獲得的利潤不低于甲超市的1.2倍列出方程解答即可.

試題解析:(1)、設(shè)1套驅(qū)蚊器售價5x元,1瓶電熱蚊香液的售價x元;

解得x=6,

所以設(shè)1套驅(qū)蚊器售價30元,1瓶電熱蚊香液的售價6元.

(2)、設(shè)乙超市銷售x套驅(qū)蚊器. W=2000×(30×0.8524)=3000元;

W=x×(3024)x×5=x 由題意知WW 解得x3600.

乙超市至少銷售3600套驅(qū)蚊器.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,AD為等腰直角△ABC的高,點A和點C分別在正方形DEFG的邊DG和DE上,連接BG,AE.

(1)求證:BG=AE;
(2)將正方形DEFG繞點D旋轉(zhuǎn),當(dāng)線段EG經(jīng)過點A時,(如圖②所示)

①求證:BG⊥GE;
②設(shè)DG與AB交于點M,若AG:AE=3:4,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將DCB繞著點D順時針旋轉(zhuǎn)45°得到DGHHGAB于點E,連接DEAC于點F,連接FG。則下列結(jié)論:

①四邊形AEGF是菱形 ②△AEDGED

③∠DFG=112.5° ④BC+FG=1.5

其中正確的結(jié)論是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線AC、BD相交于點O,EAC上一點,過點AAGEB,垂足為G,AGBDF,則OE=OF

1請證明0E=OF

2)解答(1)題后,某同學(xué)產(chǎn)生了如下猜測:對上述命題,若點EAC的延長線上,AGEB,AG EB的延長線于 G,AG的延長線交DB的延長線于點F,其他條件不變,則仍有OE=OF.問:猜測所得結(jié)論是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,O是AB邊上的一點,以O(shè)A為半徑的⊙O與邊BC相切于點E.
(1)若AC=6,BC=10,求⊙O的半徑.
(2)過點E作弦EF⊥AB于M,連接AF,若∠AFE=2∠ABC,求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,ADABC的角平分線,DEABDFAC,垂足分別為E,F,則下列四個結(jié)論:①AD上任意一點到點C,B的距離相等;②AD上任意一點到AB,AC的距離相等;③BDCD,ADBC;④∠BDECDF.其中正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,2),AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點B的坐標(biāo);

(2)在點P的運動過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大。蝗绺淖,請說明理由.

(3)連接OQ,當(dāng)OQAB時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊A1C1C2的周長為1,作C1D1A1C2D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4;且點A1A2,A3都在直線C1C2同側(cè),如此下去,則A1C1C2,A2C2C3,A3C3C4,AnCnCn+1的周長和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)直線y=kx+4經(jīng)過點(1,2),求不等式kx+4≥0的解集.

(2)x取哪些正整數(shù)時,不等式 x+3>6 2x-1<10 都成立?

查看答案和解析>>

同步練習(xí)冊答案