【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:
(1) 求出△PQR的面積;
(2) 畫(huà)出△P′Q′R′,使△P′Q′R′與△PQR關(guān)于y軸對(duì)稱(chēng),寫(xiě)出點(diǎn)P′、Q′、R′的坐標(biāo);
(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.
【答案】解:(1) S△PQR=
(2) △P′Q′R′就是所要畫(huà)的三角形 各點(diǎn)坐標(biāo)分別為P′(4,-1)、Q′(1,4)、
R′(-1,1);(3).
【解析】
(1)△PQR的面積從圖中可以看出是一個(gè)矩形的面積-3個(gè)三角形的面積,利用網(wǎng)格就可求出.
(2)從三角形的三個(gè)頂點(diǎn)分別向y軸引垂線(xiàn),并延長(zhǎng),相同長(zhǎng)度找到對(duì)應(yīng)點(diǎn),順次連接即可.然后從圖上讀出坐標(biāo).
(3)連接,從圖上可以看出它是一個(gè)等腰梯形,利用梯形的面積公式計(jì)算.
(1)S△PQR=5×5×(5×2+3×2+5×3)=9.5;
(2)如圖所示:
△P′Q′R′就是所要畫(huà)的三角形.
各點(diǎn)坐標(biāo)分別為P′(4,-1)、Q′(1,4)、R′(-1,1);
(3)S=(2+8)×5=25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,∠A=50°,P是△ABC內(nèi)一點(diǎn),且∠ACP=∠PBC,則∠BPC的度數(shù)為( )
A. 130° B. 115° C. 110° D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有A、B兩種客車(chē),它們的載客量和租金如下表,星星中學(xué)根據(jù)實(shí)際情況,計(jì)劃用A、B型車(chē)共5輛,同時(shí)送七年級(jí)師生到校基地參加社會(huì)實(shí)踐活動(dòng).
A | B | |
載客量(人/輛) | 40 | 20 |
租金(元/輛) | 200 | 150 |
(1)若要保證租金費(fèi)用不超過(guò)980元,請(qǐng)問(wèn)該學(xué)校有哪幾種租車(chē)方案?
(2)在(1)的條件下,若七年級(jí)師生共有150人,問(wèn)哪種租車(chē)方案最省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是菱形,DF⊥AB于點(diǎn)F,BE⊥CD于點(diǎn)E.
(1)求證:AF=CE;
(2)若DE=2,BE=4,求sin∠DAF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中∠BAC=135°,點(diǎn)E,點(diǎn)F在BC上,EM垂直平分AB交AB于點(diǎn)M,FN垂直平分AC交AC于點(diǎn)N,BE=12,CF=9.
(1)判斷△EAF的形狀,并說(shuō)明理由;
(2)求△EAF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市規(guī)定:出租車(chē)起步價(jià)允許行駛的最遠(yuǎn)路程為3千米,超過(guò)3千米的部分按每千米另行收費(fèi),甲說(shuō):“我乘這種出租車(chē)走了9千米,付了15元”:乙說(shuō):“我乘這種出租車(chē)走了25千米,付了39元”請(qǐng)你算一算這種出租車(chē)的起步價(jià)是多少元?超過(guò)3千米后,每千米的車(chē)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“小組合作制”正在七年級(jí)如火如茶地開(kāi)展,旨在培養(yǎng)七年級(jí)學(xué)生的合作學(xué)習(xí)的精神和能力,學(xué)會(huì)在合作中自主探索.?dāng)?shù)學(xué)課上,吳老師在講授“角平分線(xiàn)”時(shí),設(shè)計(jì)了如下四種教學(xué)方法:①教師講授,學(xué)生練習(xí);②學(xué)生合作交流,探索規(guī)律;③教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生練習(xí);④教師引導(dǎo)學(xué)生總結(jié)規(guī)律,學(xué)生合作交流,吳老師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到七年級(jí)所有同學(xué)手中要求每位同學(xué)選出自己最喜歡的一種,然后吳老師從所有調(diào)查問(wèn)卷中隨機(jī)抽取了若干份調(diào)查問(wèn)卷作為樣本,統(tǒng)計(jì)如下:
序號(hào)①②③④代表上述四種教學(xué)方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請(qǐng)回答問(wèn)題:
(1)在后來(lái)的抽樣調(diào)查中,吳老師共抽取 位學(xué)生進(jìn)行調(diào)查;并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)圖二中,表示③部分的扇形的中心角為多少度?
(3)若七年級(jí)學(xué)生中選擇④種教學(xué)方法的有540人,請(qǐng)估計(jì)七年級(jí)總?cè)藬?shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面直角坐標(biāo)系中,反比例函數(shù)y= 與一次函數(shù)y=kx﹣1(k為常數(shù),且k>0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC沿著點(diǎn)A到點(diǎn)D的方向平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).
(1)畫(huà)出△ABC中AB邊上的高CH;(提醒:別忘了標(biāo)注字母);
(2)請(qǐng)畫(huà)出平移后的△DEF;
(3)平移后,線(xiàn)段AB掃過(guò)的部分所組成的封閉圖形的面積是___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com