【題目】某工程隊承接了60萬平方米的綠化工程,由于情況有變,……設(shè)原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是( )
A. 實際工作時每天的工作效率比原計劃提高了結(jié)果提前30天完成了這一任務
B. 實際工作時每天的工作效率比原計劃提高了,結(jié)果延誤30天完成了這一任務
C. 實際工作時每天的工作效率比原計劃降低了,結(jié)果延誤30天完成了這一任務
D. 實際工作時每天的工作效率比原計劃降低了,結(jié)果提前30天完成了這一任務
科目:初中數(shù)學 來源: 題型:
【題目】在△ ABC中,AB = AC
(1)如圖 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,則∠EDC =
(2)如圖 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,則∠EDC =
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:
(4)如圖 3,如果AD不是BC上的高,AD = AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,2).
(1)若點(﹣,0)也在該拋物線上,求a,b滿足的關(guān)系式;
(2)若該拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為心,OA為半徑的圓與拋物線的另兩個交點為B,C,且△ABC有一個內(nèi)角為60°.
①求拋物線的解析式;
②若點P與點O關(guān)于點A對稱,且O,M,N三點共線,求證:PA平分∠MPN.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰△ABC的底邊BC=20cm,D是腰AB上一點,且CD=16cm,BD=12cm,
(1)求△ABC中BC邊上的高
(2)求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC與△A'B'C在平面直角坐標系中的位置如圖.
(1)分別寫出B、B'的坐標:B______;B′______;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A'B'C內(nèi)的對應點P′的坐標為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(11·西寧)西寧中心廣場有各種音樂噴泉,其中一個噴水管的最大高度為3米,此時距噴水管的水平距離為米,在如圖3所示的坐標系中,這個噴泉的函數(shù)關(guān)系式是
A. y=-(x-)x2+3 B. y=-3(x+)x2+3
C. y=-12(x-)x2+3 D. y=-12(x+)x2+3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E、F分別是AD和AD延長線上的點,且DE=DF,連結(jié)BF,CE.下列說法:①△ABD和△ACD面積相等;②CE=AE;③△BDF≌△CDE; ④BF∥CE;⑤∠BAD=∠CAD.其中正確的有( ).
A.①⑤B.③⑤C.①③④D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸從左至右交于,兩點,與軸交于點.
若拋物線過點,求拋物線的解析式;
在第二象限內(nèi)的拋物線上是否存在點,使得以、、三點為頂點的三角形與相似?若存在,求的值;若不存在,請說明理由.
如圖,在的條件下,點的坐標為,點是拋物線上的點,在軸上,從左至右有、兩點,且,問在軸上移動到何處時,四邊形的周長最?請直接寫出符合條件的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知有公共頂點的△和△都是等邊三角形,且>.
(1)如圖1,當點恰好在的延長線上時,連結(jié),分別交,于點,.
①求證:;
②連接,求證:∥;
(2)圖2是由圖1中的△繞點順時針旋轉(zhuǎn)角(<<)得到,使得恰好經(jīng)過的中點,試猜想線段,,之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com