【題目】我市某企業(yè)安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲產(chǎn)品或件乙產(chǎn)品,根據(jù)市場需求和生產(chǎn)經(jīng)驗,甲產(chǎn)品每件可獲利元,乙產(chǎn)品每件可獲利元,而實際生產(chǎn)中,生產(chǎn)乙產(chǎn)品需要額外支出一定的費用,經(jīng)過核算,每生產(chǎn)件乙產(chǎn)品,當天平均每件獲利減少元,設每天安排人生產(chǎn)乙產(chǎn)品.

根據(jù)信息填表:

產(chǎn)品種類

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(元)

若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多元,試問:該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是多少元?

【答案】1265x),1202x;(2)該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是2650.

【解析】

1)設每天安排x人生產(chǎn)乙產(chǎn)品,則每天安排(65x)人生產(chǎn)甲產(chǎn)品,每天可生產(chǎn)x件乙產(chǎn)品,每件的利潤為(1202x)元,每天可生產(chǎn)265x)件甲產(chǎn)品,此問得解;

2)由總利潤=每件產(chǎn)品的利潤×生產(chǎn)數(shù)量,結(jié)合每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多650元,即可得出關于x的一元二次方程,解之取其較小值得到x值,然后再計算總利潤即可.

解:(1)設每天安排x人生產(chǎn)乙產(chǎn)品,則每天安排(65x)人生產(chǎn)甲產(chǎn)品,每天可生產(chǎn)x件乙產(chǎn)品,每件的利潤為(1202x)元,每天可生產(chǎn)265x)件甲產(chǎn)品.

填表如下:

產(chǎn)品種類

每天工人數(shù)(人)

每天產(chǎn)量(件)

每件產(chǎn)品可獲利潤(元)

265x

1202x

2)依題意,得:15×265x1202xx650,

整理得:x275x6500

解得:x110x265(不合題意,舍去),

15×265x)+(1202xx2650

答:該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是2650元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了盡快的適應中招體考項目,現(xiàn)某校初二(1)班班委會準備籌集1800元購買A、B兩種類型跳繩供班級集體使用.

(1)班委會決定,購買A種跳繩的資金不少于B種跳繩資金的2倍,問最多用多少資金購買B種跳繩?

(2)經(jīng)初步統(tǒng)計,初二(1)班有25人自愿參與購買,那么平均每生需交72元.初三(1)班了解情況后,把體考后閑置的跳繩贈送了若干給初二(1)班,這樣只需班級共籌集1350元.經(jīng)初二(1)班班委會進一步宣傳,自愿參與購買的學生在25人的基礎上增加了4a%.則每生平均交費在72元基礎上減少了2.5a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:

10

6

10

6

8

7

9

7

8

9

經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.

1)求乙進球的平均數(shù)和方差;

2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點A,與y軸交于點B。

1)求AB兩點的坐標;

2)若點Pm,n)為線段AB上的一個動點(與AB不重合),作PEx軸于點E,PFy軸于點F,連接E,若PAO的面積為S,求S關于m的函數(shù)關系式,并寫出m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點A(﹣1,0),B(4,0),交y軸于點C;

(1)求拋物線的解析式(用一般式表示);

(2)點Dy軸右側(cè)拋物線上一點,是否存在點D使?若存在請直接給出點D坐標;若不存在,請說明理由;

(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種商品按銷售量分三部分制定銷售單價,如下表:

銷售量

單價

不超過100件的部分

2.8/

超過100件不超過300件的部分

2.2/

超過300件的部分

2/

1)若買100件花 元,買300件花 元;買380件花 元;

2)小明買這種商品花了500元,求購買了這種商品多少件;

3)若小明花了n元(n>280),恰好購買0.4n件這種商品,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校以我最想去的社會實踐地為課題,開展了一次調(diào)查,從全校同學中隨機抽取了部分同學進行調(diào)查,每位同學從蓀湖花海”、“保國寺”、“慈城古鎮(zhèn)”、“綠色學校中選取一項最想去的社會實踐地,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計圖(部分信息未給出).

請根據(jù)統(tǒng)計圖中信息,解答下列問題:

(1)該調(diào)查的樣本容量為________,a=________%,b=________%,“蓀湖花海所對應扇形的圓心角度數(shù)為________度.

(2)補全條形統(tǒng)計圖;

(3)若該校共有1600名學生,請估計全校最想去綠色學校的學生共有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.

1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;

2)若連接AA′,CC′,則這兩條線段之間的關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,小慧同學利用直尺和規(guī)進行了如下操作:①連接AC,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點P、Q;②作直線PQ,分別交BC、AC、AD于點E、O、F,連接AECF.根據(jù)操作結(jié)果,解答下列問題:

1)線段AFCF的數(shù)量關系是 .

2)若∠BAD=120°,AE平分∠BAD,AB=8,求四邊形AECF的面積.

查看答案和解析>>

同步練習冊答案