【題目】我市某企業(yè)安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲產(chǎn)品或件乙產(chǎn)品,根據(jù)市場需求和生產(chǎn)經(jīng)驗,甲產(chǎn)品每件可獲利元,乙產(chǎn)品每件可獲利元,而實際生產(chǎn)中,生產(chǎn)乙產(chǎn)品需要額外支出一定的費用,經(jīng)過核算,每生產(chǎn)件乙產(chǎn)品,當天平均每件獲利減少元,設每天安排人生產(chǎn)乙產(chǎn)品.
根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | |||
乙 |
若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多元,試問:該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是多少元?
【答案】(1)2(65x),1202x;(2)該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是2650元.
【解析】
(1)設每天安排x人生產(chǎn)乙產(chǎn)品,則每天安排(65x)人生產(chǎn)甲產(chǎn)品,每天可生產(chǎn)x件乙產(chǎn)品,每件的利潤為(1202x)元,每天可生產(chǎn)2(65x)件甲產(chǎn)品,此問得解;
(2)由總利潤=每件產(chǎn)品的利潤×生產(chǎn)數(shù)量,結(jié)合每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多650元,即可得出關于x的一元二次方程,解之取其較小值得到x值,然后再計算總利潤即可.
解:(1)設每天安排x人生產(chǎn)乙產(chǎn)品,則每天安排(65x)人生產(chǎn)甲產(chǎn)品,每天可生產(chǎn)x件乙產(chǎn)品,每件的利潤為(1202x)元,每天可生產(chǎn)2(65x)件甲產(chǎn)品.
填表如下:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | 2(65x) | ||
乙 | 1202x |
(2)依題意,得:15×2(65x)(1202x)x=650,
整理得:x275x+650=0
解得:x1=10,x2=65(不合題意,舍去),
∴15×2(65x)+(1202x)x=2650.
答:該企業(yè)每天生產(chǎn)甲、乙產(chǎn)品可獲得總利潤是2650元.
科目:初中數(shù)學 來源: 題型:
【題目】為了盡快的適應中招體考項目,現(xiàn)某校初二(1)班班委會準備籌集1800元購買A、B兩種類型跳繩供班級集體使用.
(1)班委會決定,購買A種跳繩的資金不少于B種跳繩資金的2倍,問最多用多少資金購買B種跳繩?
(2)經(jīng)初步統(tǒng)計,初二(1)班有25人自愿參與購買,那么平均每生需交72元.初三(1)班了解情況后,把體考后閑置的跳繩贈送了若干給初二(1)班,這樣只需班級共籌集1350元.經(jīng)初二(1)班班委會進一步宣傳,自愿參與購買的學生在25人的基礎上增加了4a%.則每生平均交費在72元基礎上減少了2.5a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.
(1)求乙進球的平均數(shù)和方差;
(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應選誰?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點A,與y軸交于點B。
(1)求A、B兩點的坐標;
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接E,若△PAO的面積為S,求S關于m的函數(shù)關系式,并寫出m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017廣東省深圳市)如圖,拋物線經(jīng)過點A(﹣1,0),B(4,0),交y軸于點C;
(1)求拋物線的解析式(用一般式表示);
(2)點D為y軸右側(cè)拋物線上一點,是否存在點D使?若存在請直接給出點D坐標;若不存在,請說明理由;
(3)將直線BC繞點B順時針旋轉(zhuǎn)45°,與拋物線交于另一點E,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種商品按銷售量分三部分制定銷售單價,如下表:
銷售量 | 單價 |
不超過100件的部分 | 2.8元/件 |
超過100件不超過300件的部分 | 2.2元/件 |
超過300件的部分 | 2元/件 |
(1)若買100件花 元,買300件花 元;買380件花 元;
(2)小明買這種商品花了500元,求購買了這種商品多少件;
(3)若小明花了n元(n>280),恰好購買0.4n件這種商品,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校以“我最想去的社會實踐地”為課題,開展了一次調(diào)查,從全校同學中隨機抽取了部分同學進行調(diào)查,每位同學從“蓀湖花海”、“保國寺”、“慈城古鎮(zhèn)”、“綠色學校”中選取一項最想去的社會實踐地,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計圖(部分信息未給出).
請根據(jù)統(tǒng)計圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為________,a=________%,b=________%,“蓀湖花海”所對應扇形的圓心角度數(shù)為________度.
(2)補全條形統(tǒng)計圖;
(3)若該校共有1600名學生,請估計全校最想去“綠色學校”的學生共有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,小慧同學利用直尺和規(guī)進行了如下操作:①連接AC,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點P、Q;②作直線PQ,分別交BC、AC、AD于點E、O、F,連接AE、CF.根據(jù)操作結(jié)果,解答下列問題:
(1)線段AF與CF的數(shù)量關系是 .
(2)若∠BAD=120°,AE平分∠BAD,AB=8,求四邊形AECF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com