【題目】如圖,矩形的對(duì)角線相交于點(diǎn),,.
求證:四邊形是菱形;
若,菱形的面積為,求的長(zhǎng).
【答案】(1)證明見解析;(2)
【解析】
(1)首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD,即可判定四邊形CODE是菱形;
(2)利用矩形和菱形的性質(zhì)易得OM=,CM=CD,OM=BC,再利用菱形的面積公式求得OM,即可得出結(jié)論.
(1)∵CE∥BD,DE∥AC,∴四邊形CODE是平行四邊形.
∵四邊形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OC,∴四邊形CODE是菱形.
(2)連接OE.
∵四邊形CODE是菱形,∴OE⊥CD,OM=,CM=CD.
∵四邊形ABCD是矩形,∴BC⊥CD,∴OM∥BC,∴OM=BC.
∵ABCD是矩形,∴AB∥CD,∴∠OCM=∠BAC.
∵tan∠BAC=,∴tan∠OCM==,設(shè)OM=3x,則CM=2x.
∵菱形OCED的面積為12,∴6x4x=12,∴x=±(負(fù)值舍去),∴OM=,∴BC=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的垂直平分線交于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________.
①; ②; ③; ④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:DF=CF.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F、G、H分別在它的四條邊上,且四邊形EFGH是什么特殊四邊形?你是如何判斷的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AD是BC邊上的高,CE平分∠ACB,AD與CE相交于點(diǎn)F.∠B=65°,∠AFC=120°,求∠BAD和∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是△ABC內(nèi)一點(diǎn),且點(diǎn)O到△ABC三個(gè)頂點(diǎn)的距離相等,若∠A=70°,則∠BOC=_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△OAB和等腰△OCD中,OA=OB,OC=OD,連接AC、BD交于點(diǎn)M.
(1)如圖1,若∠AOB=∠COD=40°:
①AC與BD的數(shù)量關(guān)系為 ;
②∠AMB的度數(shù)為 ;
(2)如圖2,若∠AOB=∠COD=90°:
①判斷AC與BD之間存在怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
②求∠AMB的度數(shù);
(3)在(2)的條件下,當(dāng)∠CAB=30°,且點(diǎn)C與點(diǎn)M重合時(shí),請(qǐng)直接寫出OD與OA之間存在的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com