【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )
A. ①②③B. ①③C. ①④D. ①③④
【答案】B
【解析】
根據(jù)拋物線經(jīng)過(1,0),確定a+b+c的符號;根據(jù)對稱軸方程確定b與2a的關系;根據(jù)拋物線與x軸的一個交點和對稱軸確定另一個交點,得到ax2+bx+c=0的兩根;根據(jù)a>0,b>0,c<0,b=2a,確定a﹣2b+c的符號.
解:∵y=ax2+bx+c經(jīng)過(1,0),
∴a+b+c=0,①正確;
∵
∴b=2a,②錯誤;
∵y=ax2+bx+c經(jīng)過(1,0),對稱軸為x=﹣1,
∴y=ax2+bx+c與x軸的另一個交點為(﹣3,0),
∴ax2+bx+c=0的兩根分別為﹣3和1,③正確;
∵a>0,b>0,c<0,b=2a,
∴a﹣2b+c=﹣a﹣b+c<0,④錯誤,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是2019年1月份的日歷.任意選擇圖中的菱形框部分,將每個菱形框部分中去掉中間位置的數(shù)之后,相對的兩對數(shù)分別相乘,再相減,例如:9×11-3×17=48,13×15-7×21=48.不難發(fā)現(xiàn),結(jié)果都是48
(1)請證明發(fā)現(xiàn)的規(guī)律;
(2)小明說:他用一個如圖所示菱形框,框出5個數(shù)字,其中最小數(shù)與最大數(shù)的積是120,請判斷他的說法是否正確.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D是弧AE上一點,且∠BDE=∠CBE,BD與AE交于點F.
(1)求證:BC是⊙O的切線;
(2)若BD平分∠ABE,求證:DE2=DF·DB;
(3)在(2)的條件下,延長ED,BA交于點P,若PA=AO,DE=2,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將二次函數(shù)y=x2﹣5x﹣6在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新圖象,若直線y=2x+b與這個新圖象有3個公共點,則b的值為( 。
A. ﹣或﹣12B. ﹣或2C. ﹣12或2D. ﹣或﹣12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4π,BC=3π,半徑是2的⊙O從與AC相切于點D的位置出發(fā),在△ABC外部按順時針方向沿三角形滾動,又回到與AC相切于點D的位置,則⊙O自轉(zhuǎn)了( )
A.2周B.3周C.4周D.5周
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,點E在弦AB所對的優(yōu)弧上,且為半圓,C是上的動點,連接CA、CB,已知AB=4cm,設B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.
小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 0.78 | 1.76 | 2.85 | 3.98 | 4.95 | 4.47 |
y2/cm | 4 | 4.69 | 5.26 | 5.96 | 5.94 | 4.47 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:
①連接BE,則BE的長約為 cm.
②當以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2-4n+4經(jīng)過點P(2,4),與x軸交于A、B兩點,過點P作直線l∥x軸,點C為第二象限內(nèi)直線l上方,拋物線上一個動點,其橫坐標為m。
(1)如圖(1),若AB=6, 求拋物線解析式
(2)如圖(2),在(1)的條件下,設點C的橫坐標為t,ACP的面積S,求S與t之間的函數(shù)關系式.
(3)如圖(3),連接OP,過點C作EC∥OP交拋物線于點E,直線PE、CP分別交x軸于點G、H,當PG=PH時,求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com