如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線(xiàn)經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.

(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線(xiàn)上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線(xiàn)頂點(diǎn)F,試判斷直線(xiàn)MF與⊙E的位置關(guān)系,并說(shuō)明理由.
解:(1)∵以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),
∴A(-2,0),B(8,0)。
如圖所,連接CE,

在Rt△OCE中,,CE=5,
由勾股定理得:,
∴C(0,-4)。
(2)∵點(diǎn)A(-2,0),B(8,0)在拋物線(xiàn)上,
∴設(shè)拋物線(xiàn)的解析式為。
∵點(diǎn)C(0,-4)在拋物線(xiàn)上,
,解得。
∴拋物線(xiàn)的解析式為:,即。
。
∴頂點(diǎn)F的坐標(biāo)為(3,)。
(3)①∵△ABC中,底邊AB上的高OC=4,
∴若△ABC與△ABM面積相等,則拋物線(xiàn)上的點(diǎn)M須滿(mǎn)足條件:|yM|=4。
(I)若yM=4,則,
整理得:,解得
∴點(diǎn)M的坐標(biāo)為(,4)或(,4)。
(II)若yM=-4,則,
整理得:,解得x=6或x=0(與點(diǎn)C重合,故舍去)。
∴點(diǎn)M的坐標(biāo)為(6,-4)。
綜上所述,滿(mǎn)足條件的點(diǎn)M的坐標(biāo)為:(,4)或(,4)或(6,-4)。
②直線(xiàn)MF與⊙E相切。理由如下:
由題意可知,M(6,-4)。
如圖,連接EM,MF,過(guò)點(diǎn)M作MG⊥對(duì)稱(chēng)軸EF于點(diǎn)G,則MG=3,EG=4。
在Rt△MEG中,由勾股定理得:
∴點(diǎn)M在⊙E上。
由(2)知,F(xiàn)(3,),∴EF=
。
在Rt△MGF中,由勾股定理得:,
在△EFM中,∵,
∴△EFM為直角三角形,∠EMF=90°。
∵點(diǎn)M在⊙E上,且∠EMF=90°,
∴直線(xiàn)MF與⊙E相切。
(1)由題意可直接得到點(diǎn)A、B的坐標(biāo),連接CE,在Rt△OCE中,利用勾股定理求出OC的長(zhǎng),則得到點(diǎn)C的坐標(biāo)。
(2)已知點(diǎn)A、B、C的坐標(biāo),利用交點(diǎn)式與待定系數(shù)法求出拋物線(xiàn)的解析式,由解析式得到頂點(diǎn)F的坐標(biāo)。
(3)①△ABC中,底邊AB上的高OC=4,若△ABC與△ABM面積相等,則拋物線(xiàn)上的點(diǎn)M須滿(mǎn)足條件:|yM|=4.因此解方程yM=4和yM=-4,可求得點(diǎn)M的坐標(biāo)。
②如解答圖,作輔助線(xiàn),可求得EM=5,因此點(diǎn)M在⊙E上;再利用勾股定理求出MF的長(zhǎng)度,則利用勾股定理的逆定理可判定△EMF為直角三角形,∠EMF=90°,所以直線(xiàn)MF與⊙E相切。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).

(1)b=    ,點(diǎn)B的橫坐標(biāo)為    (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過(guò)點(diǎn)A作直線(xiàn)AE∥BC,與拋物線(xiàn)交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為
(2,0),當(dāng)C,D,E三點(diǎn)在同一直線(xiàn)上時(shí),求拋物線(xiàn)的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線(xiàn)上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有    個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線(xiàn)經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.

(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)M是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿D→B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→A→D勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請(qǐng)直接寫(xiě)出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過(guò)O,C兩點(diǎn)做拋物線(xiàn)(a為常數(shù),a>0),該拋物線(xiàn)與斜邊AB交于點(diǎn)E,直線(xiàn)OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A     ,k=     ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線(xiàn)的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線(xiàn)OA與拋物線(xiàn)的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線(xiàn)的圖象過(guò)C點(diǎn).

(1)求拋物線(xiàn)的解析式;
(2)平移該拋物線(xiàn)的對(duì)稱(chēng)軸所在直線(xiàn)l.當(dāng)l移動(dòng)到何處時(shí),恰好將△ABC的面積分為相等的兩部分?
(3)點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角體系中,直線(xiàn)AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3。取BO的中點(diǎn)D,連接CD、MD和OC。

(1)求證:CD是⊙M的切線(xiàn);
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D、M、A,其對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長(zhǎng)最小時(shí),拋物線(xiàn)上是否存在點(diǎn)Q,使?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450得到△A1B1C.請(qǐng)你寫(xiě)出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線(xiàn)上.請(qǐng)你求出符合條件的拋物線(xiàn)解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線(xiàn)上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫(xiě)出點(diǎn)P的所有坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是二次函數(shù)圖象的一部分,其對(duì)稱(chēng)軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0).下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線(xiàn)上兩點(diǎn),則
y1>y2.其中說(shuō)法正確的是【   】
A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=﹣2(x﹣5)2+3的頂點(diǎn)坐標(biāo)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案