【題目】如圖,矩形ABCD中,AB3,BC4,點(diǎn)EA邊上一點(diǎn),且AE,點(diǎn)F是邊BC上的任意一點(diǎn),把BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

【答案】

【解析】

根據(jù)矩形ABCD中,AB3,BC4,可得AC5,由AE可得點(diǎn)F是邊BC上的任意位置時(shí),點(diǎn)C始終在AC的下方,設(shè)點(diǎn)GAC的距離為h,要使四邊形AGCD的面積的最小,即h最。渣c(diǎn)G在以點(diǎn)E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.過(guò)點(diǎn)EEHAC,交圓E于點(diǎn)G,此時(shí)h最。鶕(jù)銳角三角函數(shù)先求得h的值,再分別求得三角形ACD和三角形ACG的面積即可得結(jié)論.

解:如圖,連接AC

在矩形ABCD中,AB3BC4,

B=∠D90°,

AC5

AB3,AE

∴點(diǎn)F是邊BC上的任意位置時(shí),點(diǎn)G始終在AC的下方,

設(shè)點(diǎn)GAC的距離為h,

S四邊形AGCDSACD+SACG

3×4+×5h

6+h

要使四邊形AGCD的面積的最小,即h最。

∵點(diǎn)G在以點(diǎn)E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.

過(guò)點(diǎn)EEHAC,交圓E于點(diǎn)G,此時(shí)h最小.

RtABC中,sinBAC,

RtAEH中,AE,

sinBAC,

解得EHAE,

EGBEABAE3

hEHEG﹣(3)=3

S四邊形AGCD6+×3

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、23、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),交軸于點(diǎn),將直線以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn),交軸于點(diǎn),交拋物線于另一點(diǎn).直線的解析式為:

點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),當(dāng)的面積最大時(shí),在線段上找一點(diǎn)(不與重合),使的值最小,求出點(diǎn)的坐標(biāo),并直接寫出的最小值;

如圖,將沿射線方向以每秒個(gè)單位的速度平移,記平移后的,平移時(shí)間為秒,當(dāng)為等腰三角形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×qp,q是正整數(shù),且pq),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×qn的最佳分解,并規(guī)定:Fn=.例如:12可以分解成1×12,2×63×4,因?yàn)?/span>1216243,所以3×412的最佳分解,所以F12=.如果一個(gè)兩位正整數(shù)t,t=10x+y1xy9x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為36,那么我們稱這個(gè)數(shù)t吉祥數(shù).根據(jù)以上新定義,下列說(shuō)法正確的有:(1F48=;(2)如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù),則對(duì)任意一個(gè)完全平方數(shù)m,總有Fm=1;(31526吉祥數(shù);(4吉祥數(shù)中,Ft)的最大值為 ( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ADBC,AEBC于點(diǎn)E,ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.

(1)求證:CD與⊙O相切;

(2)BF24OE5,求tanABC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸,交于AB兩點(diǎn),點(diǎn)CBO的中點(diǎn)且

(1)求直線AC的解析式;

(2)若點(diǎn)M是直線AC的一點(diǎn),當(dāng)時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線Gyax22ax+4a0).

1)當(dāng)a1時(shí),

①拋物線G的對(duì)稱軸為x   ;

②若在拋物線G上有兩點(diǎn)(2,y1),(my2),且y2y1,則m的取值范圍是   ;

2)拋物線G的對(duì)稱軸與x軸交于點(diǎn)M,點(diǎn)M與點(diǎn)A關(guān)于y軸對(duì)稱,將點(diǎn)M向右平移3個(gè)單位得到點(diǎn)B,若拋物線G與線段AB恰有一個(gè)公共點(diǎn),結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)北京市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,北京市近五年國(guó)民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國(guó)民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯(cuò)誤的是(

A.2013年至2017年北京市國(guó)民生產(chǎn)總值逐年增加

B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元

C.2017年比2016年的國(guó)民生產(chǎn)總值增加了10%

D.若從2018年開始,每一年的國(guó)民生產(chǎn)總值比前一年均增長(zhǎng)10%,到2019年的國(guó)民生產(chǎn)總值將達(dá)到33 880億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】發(fā)現(xiàn)來(lái)源于探究.小亮進(jìn)行數(shù)學(xué)探究活動(dòng),作邊長(zhǎng)為a的正方形ABCD和邊長(zhǎng)為b的正方形AEFGa>b),開始時(shí),點(diǎn)EAB上,如圖1.將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn).

1)如圖2,小亮將正方形AEFG繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),連接BE、DG,當(dāng)點(diǎn)G恰好落在線段BE上時(shí),小亮發(fā)現(xiàn)DGBE,請(qǐng)你幫他說(shuō)明理由.當(dāng)a=3b=2時(shí),請(qǐng)你幫他求此時(shí)DG的長(zhǎng).

2)如圖3,小亮旋轉(zhuǎn)正方形AEFG,點(diǎn)EDA的延長(zhǎng)線上,連接BF、DF.當(dāng)FG平分∠BFD時(shí),請(qǐng)你幫他求ab及∠FBG的度數(shù).

3)如圖4,BE的延長(zhǎng)線與直線DG相交于點(diǎn)P,a=2b.當(dāng)正方形AEFG繞點(diǎn)A從圖1開始,逆時(shí)針?lè)较蛐D(zhuǎn)一周時(shí),請(qǐng)你幫小亮求點(diǎn)P運(yùn)動(dòng)的路線長(zhǎng)(用含b的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案