【題目】如圖,在直角坐標系中有為坐標原點,,將此三角形繞原點順時針旋轉,得到,二次函數(shù)的圖象剛好經(jīng)過三點.

(1)求二次函數(shù)的解析式及頂點的坐標;

(2)過定點的直線與二次函數(shù)圖象相交于兩點.

①若,求的值;

②證明:無論為何值,恒為直角三角形;

③當直線繞著定點旋轉時,外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達式.

【答案】(1),;(2)①;②見解析;③

【解析】

1)求出點AB、C的坐標分別為(03)、(-1,0)、(3,0),即可求解;

2)①SPMN=PQ×x2-x1),則x2-x1=4,即可求解;②k1k2==-1,即可求解;③取MN的中點H,則點HPMN外接圓圓心,即可求解.

(1),則,

即點的坐標分別為、、,

則二次函數(shù)表達式為:

即:,解得:,

故函數(shù)表達式為:,

;

(2)將二次函數(shù)與直線的表達式聯(lián)立并整理得:

,

設點的坐標為、

,

則:

同理:,

,當時,,即點

,則

,

解得:;

②點的坐標為、、點,

則直線表達式中的值為:,直線表達式中的值為:,

為: ,

,

即:恒為直角三角形;

③取的中點,則點外接圓圓心,

設點坐標為,

,

,

整理得:

即:該拋物線的表達式為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ab,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數(shù).

1= °;2= °;3= °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖反映的過程是小明從家去食堂吃早餐,接著去圖書館讀報,然后回家,其中x表示時間,y表示小明離家的距離,小明家、食堂、圖書館在同一直線上,根據(jù)圖中提供的信息,下列說法正確的是( 。

A.食堂離小明家24km

B.小明在圖書館呆了20min

C.小明從圖書館回家的平均速度是004km/min

D.圖書館在小明家和食堂之間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知xOy=90°,線段AB=10,若點AOy上滑動,B隨著線段AB在射線Ox上滑動(A,BO不重合),RtAOB的內(nèi)切圓K分別與OA,OB,AB切于點E,F(xiàn),P.

(1)在上述變化過程中,RtAOB的周長,K的半徑,AOB外接圓半徑這幾個量中不會發(fā)生變化的是什么?并簡要說明理由.

(2)AE=4,K的半徑r.

(3)RtAOB的面積為S,AEx,試求Sx之間的函數(shù)關系,并求出S最大時直角邊OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,關于x的二次函數(shù)yax22axa0)的頂點為C,與x軸交于點O、A,關于x的一次函數(shù)y=﹣axa0).

1)試說明點C在一次函數(shù)的圖象上;

2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;

3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標是n,且﹣1≤n≤1,過點Ey軸的平行線,與一次函數(shù)圖象交于點F,當0a≤2時,求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,ABAC,過AB上一點DDEACBC于點E,以E為頂點,ED為一邊,作∠DEFA,另一邊EFAC于點F

1)求證:四邊形ADEF為平行四邊形;

2)當DAB中點時,四邊形ADEF的形狀為 (直接寫出結論);

3)延長圖1中的DE到點G,使EGDE,連接AEAG,FG,得到圖2.若ADAG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時,AB寬20 m,水位上升到警戒線CD時,CD到拱橋頂E的距離僅為1 m,這時水面寬度為10 m.

(1)在如圖所示的坐標系中求拋物線的解析式;

(2)若洪水到來時,水位以每小時0.3 m的速度上升,從正常水位開始,持續(xù)多少小時到達警戒線?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司對一種新型產(chǎn)品的產(chǎn)銷情況進行了營銷調(diào)查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時,所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場后當年能全部售出且發(fā)現(xiàn)每噸的售價p(單位:萬元)由基礎價與浮動價兩部分組成,其中基礎價是固定不變的,浮動價與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時,所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)

(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;

(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;

(3)當年銷售利潤最大時,每噸的售價是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)x2﹣4x﹣3=0

(2)(x﹣3)2+2x(x﹣3)=0

(3)(x﹣1)2=4

(4)3x2+5(2x+3)=0.

查看答案和解析>>

同步練習冊答案