【題目】在某市舉辦的劃龍舟,慶端午比賽中,甲、乙兩隊在比賽時的路程(米)與時間(分鐘)之間的函數(shù)關系圖象如圖所示,根據(jù)圖象得到下列結論,其中錯誤的是(

A.這次比賽的全程是500

B.乙隊先到達終點

C.比賽中兩隊從出發(fā)到1.1分鐘時間段,乙隊的速度比甲隊的速度快

D.乙與甲相遇時乙的速度是375/分鐘

【答案】C

【解析】

由橫縱坐標可判斷A、B,觀察圖象比賽中兩隊從出發(fā)到1.1分鐘時間段,乙隊的圖象在甲圖象的下面可判斷C,由圖象得乙隊在1.11.9分鐘的路程為300米,可判斷D

由縱坐標看出,這次龍舟賽的全程是500m,故選項A正確;

由橫坐標可以看出,乙隊先到達終點,故選項B正確;

∵比賽中兩隊從出發(fā)到1.1分鐘時間段,乙隊的圖象在甲圖象的下面,

∴乙隊的速度比甲隊的速度慢,故C選項錯誤;

∵由圖象可知,乙隊在1.1分鐘后開始加速,加速的總路程是500-200=300(米),加速的時間是1.9-1.1=0.8(分鐘),

∴乙與甲相遇時,乙的速度是300÷0.8=375(米/分鐘),故D選項正確.

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列計算1+2+22+23++224+225的解題過程(主要步驟)。

解:設a=1+2+22+23++224+225,

2a=2+22+23++224+225+226,

2a-a=2+22+23++224+225+226- 1+2+22+23++224+225=226-1.

所以a=226-1.

通過閱讀,你一定學到了一種解決問題的方法。請你用此方法解決下列問題:

1)計算:1+5+52+53++52016+52017的值.

2)計算:72+73++7n-1+7n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,拋物線y=ax2+bx+3x軸交于點B、C,與y軸交于點A,且AO=CO,BC=4.

(1)求拋物線解析式;

(2)如圖2,點P是拋物線第一象限上一點,連接PBy軸于點Q,設點P的橫坐標為t,線段OQ長為d,求dt之間的函數(shù)關系式;

(3)在(2)的條件下,過點Q作直線l⊥y軸,在l上取一點M(點M在第二象限),連接AM,使AM=PQ,連接CP并延長CPy軸于點K,過點PPN⊥l于點N,連接KN、CN、CM.若∠MCN+∠NKQ=45°時,求t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4cm,BC=6cm,∠B=60°,GCD的中點,E是邊AD上的動點(E不與A、D重合),且點EAD運動,速度為1cm/sEG的延長線與BC的延長線交于點F,連接CE、DF,設點E的運動時間為

(1)求證:無論為何值,四邊形CEDF都是平行四邊形;

(2)①當s,CEAD;

②當,平行四邊形CEDF的兩條鄰邊相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點M是弧AB的中點,CMAB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,BO、CO是角平分線.

(1)∠ABC=50°,∠ACB=60°,求BOC的度數(shù),并說明理由.

(2)題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“A=70°”,求BOC的度數(shù).

(3)若A=n°,求BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D、E分別在ABC的邊ACBC上,∠C=90°,DEAB,且3DE=2AB,AE=13,BD=9,那么AB的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了滿足市場需求,某廠家生產(chǎn)A、B兩種款式的環(huán)保購物袋,每天共生產(chǎn)5000個,兩種購物袋的成本和售價如下表:

成本(元/個)

售價 (元/個)

2

2.4

3

3.6

設每天生產(chǎn)A種購物袋x個,每天共獲利y.

1)求yx的函數(shù)解析式;

2)如果該廠每天最多投入成本12000元,那么每天最多獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BNAC于點D,已知AB=10,BC=15MN=3

1)求證:BN=DN;

2)求△ABC的周長

查看答案和解析>>

同步練習冊答案