【題目】已知,BC∥OA,∠B=∠A=108°,試解答下列問(wèn)題:
(1)如圖1所示,則∠O= °,并判斷OB與AC平行嗎?為什么?
(2)如圖2,若點(diǎn)E、F在線(xiàn)段BC上,且滿(mǎn)足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于 °;
(3)在第(2)題的條件下,若平行移動(dòng)AC,如圖3.
①求∠OCB:∠OFB的值;
②當(dāng)∠OEB=∠OCA時(shí),求∠OCA的度數(shù)(直接寫(xiě)出答案,不必寫(xiě)出解答過(guò)程).
【答案】(1)72,OB∥AC,見(jiàn)解析;(2)40;(3)①∠OCB:∠OFB=1:2;②∠OCA=54°
【解析】
(1)首先根據(jù)平行線(xiàn)的性質(zhì)可得∠B+∠O=180,再根據(jù)∠A=∠B可得∠A+∠O=180,進(jìn)而得到OB∥AC;
(2)根據(jù)角平分線(xiàn)的性質(zhì)可得∠EOF=∠BOF,∠FOC=∠FOA,進(jìn)而得到∠EOC=(∠BOF+∠FOA)=∠BOA=40;
(3)①由BC∥OA可得∠FCO=∠COA,進(jìn)而得到∠FOC=∠FCO,故∠OFB=∠FOC+∠FCO=2∠OCB,進(jìn)而得到∠OCB:∠OFB=1:2;
②由(1)知:OB∥AC,BC∥OA,得到∠OCA=∠BOC,∠OEB=∠EOA,根據(jù)(1)、(2)的結(jié)果求得.
解:(1)∵BC∥OA,∠B=108
∴∠O=180-108=72,
∵BC∥OA,
∴∠B+∠O=180,
∵∠A=∠B
∴∠A+∠O=180,
∴OB∥AC
故答案為:72;
(2)∵∠A=∠B=108,由(1)得∠BOA=180﹣∠B=72,
∵∠FOC=∠AOC,并且OE平分∠BOF,
∴∠EOF=∠BOF,∠FOC=∠FOA,
∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=36
故答案為:36;
(3)①∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2;
②由(1)知:OB∥AC,∴∠OCA=∠BOC,
由(2)可以設(shè):∠BOE=∠EOF=α,∠FOC=∠COA=β,
∴∠OCA=∠BOC=2α+β
由(1)知:BC∥OA,
∴∠OEB=∠EOA=α+β+β=α+2β
∵∠OEB=∠OCA
∴2α+β=α+2β
∴α=β
∵∠AOB=72,
∴α=β=18
∴∠OCA=2α+β=36+18=54.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷(xiāo)售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷(xiāo)售量為550臺(tái).假定該設(shè)備的年銷(xiāo)售量y(單位:臺(tái))和銷(xiāo)售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.
(1)求年銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知表內(nèi)的各橫行中,從第二個(gè)數(shù)起的數(shù)都比它左邊相鄰的數(shù)大m;各豎列中,從第二個(gè)數(shù)起的數(shù)都比它上邊相鄰的數(shù)大n.求m,n以及表中x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰中,,底邊,則下列說(shuō)法中正確的有( )
;;底邊上的中線(xiàn)為;若底邊中線(xiàn)為,則.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC與BD平行嗎?AE與BF平行嗎?
因?yàn)椤?/span>1=35°,∠2=35°(已知),所以∠1=∠2.所以___∥___( ).
又因?yàn)?/span>AC⊥AE(已知),所以∠EAC=90°( )
所以∠EAB=∠EAC+∠1=125°.
同理可得,∠FBG=∠FBD+∠2=__ °.
所以∠EAB=∠FBG( ).
所以___∥___(同位角相等,兩直線(xiàn)平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】松桃孟溪火車(chē)站一檢修員某天乘一輛檢修車(chē)在筆直的鐵軌上來(lái)回檢修,規(guī)定向東為正,從車(chē)站出發(fā)到收工時(shí),行走記錄為(單位:千米):+15,-2,-5,-1,+10,-3,-2,-12,+4,+6.
⑴計(jì)算收工時(shí),檢修員在車(chē)站的哪一邊,此時(shí),距車(chē)站多遠(yuǎn)?
⑵若汽車(chē)每千米耗油0.1升,且汽油的價(jià)格為每升6.8元,求這一天檢修員從出發(fā)到收工時(shí)所耗油費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提倡節(jié)約用水,我縣自來(lái)水公司每月只給某單位計(jì)劃內(nèi)用水200噸,計(jì)劃內(nèi)用水每噸收費(fèi)2.4元,超計(jì)劃部分每噸按3.6元收費(fèi).
⑴用代數(shù)式表示下列問(wèn)題(最后結(jié)果需化簡(jiǎn) ):設(shè)用水量為噸,當(dāng)用水量小于等于200噸時(shí),需付款多少元?當(dāng)用水量大于200噸時(shí),需付款多少元?
⑵若某單位4月份繳納水費(fèi)840元,則該單位用水量多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)是1,點(diǎn)E是CD邊上的中點(diǎn).P為正方形ABCD邊上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿運(yùn)動(dòng),到達(dá)點(diǎn)E.若點(diǎn)P經(jīng)過(guò)的路程為自變量x,的面積為因變量y,則當(dāng)時(shí),x的值等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為,、.
(1)平移,使點(diǎn)移到點(diǎn),畫(huà)出平移后的,并寫(xiě)出點(diǎn)的坐標(biāo).
(2)將繞點(diǎn)旋轉(zhuǎn),得到,畫(huà)出旋轉(zhuǎn)后的,并寫(xiě)出點(diǎn)的坐標(biāo).
(3)求(2)中的點(diǎn)旋轉(zhuǎn)到點(diǎn)時(shí),點(diǎn)經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com