【題目】已知,ADABC的內(nèi)角平線,交BCD點(diǎn),DEAB,DFAC,垂足分別為E、F,連結(jié)EF,

(1)請(qǐng)根據(jù)上述幾何語(yǔ)言,畫出完整的圖形,作∠BAC的角平分線AD要求尺規(guī)作圖,(保留作圖痕跡,不寫作法);

(2)判斷AD是否為EF的垂直平分線,并說明理由.

【答案】(1)見解析;(2)AD垂直平分EF,理由見解析

【解析】

(1)依據(jù)作法畫出圖形即可;

(2)根據(jù)已知得出∠EAD=∠FAD,∠AED=∠AFD=90°,根據(jù)AAS推出△AED≌△AFD即可.根據(jù)全等三角形性質(zhì)推出即可.

(1)如圖,

(2)∵△ABC中,AD平分∠BAC,DEAB,DFAC,

DE=DF,

∴點(diǎn)DEF的垂直平分線上

RtAEDRtAED中,

RtAEDRtAED(HL),

AE=AF;

∴點(diǎn)AEF的垂直平分線上

AD垂直平分EF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到△EBD,點(diǎn)E、點(diǎn)D分別與點(diǎn)A、點(diǎn)C對(duì)應(yīng),且點(diǎn)D在邊AC上,邊DE交邊AB于點(diǎn)F,△BDC∽△ABC.已知BC= ,AC=5,那么△DBF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,選段AB=4,以AB為直徑作半圓O,點(diǎn)C為弧AB的中點(diǎn),點(diǎn)P為直徑AB上一點(diǎn),聯(lián)結(jié)PC,過點(diǎn)C作CD∥AB,且CD=PC,過點(diǎn)D作DE∥PC,交射線PB于點(diǎn)E,PD與CE相交于點(diǎn)Q.
(1)若點(diǎn)P與點(diǎn)A重合,求BE的長(zhǎng);
(2)設(shè)PC=x, =y,當(dāng)點(diǎn)P在線段AO上時(shí),求y與x的函數(shù)關(guān)系式及定義域;
(3)當(dāng)點(diǎn)Q在半圓O上時(shí),求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:

一輛貨車從超市出發(fā),向東走了3千米到達(dá)小彬家,繼續(xù)走2.5千米到達(dá)小穎家,然后向西走了10千米到達(dá)小明家,最后回到超市.

(1)以超市為原點(diǎn),以向東的方向?yàn)檎较颍?/span>1個(gè)單位長(zhǎng)度表示1千米,在數(shù)軸上表示出小明家,小彬家,小穎家的位置.

(2)小明家距小彬家多遠(yuǎn)?

(3)貨車一共行駛了多少千米?

(4)貨車每千米耗油0.2升,這次共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=50°,BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(EBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠CFE________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,過C點(diǎn)作CE⊥BD于E,延長(zhǎng)AF、EC交于點(diǎn)H,下列結(jié)論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC, C=30°,AB的垂直平分線交BCE,則下列結(jié)論正確的是(

A. BE=CE B. BE=CE C. BE= CE D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,∠ACB=90°,點(diǎn)D在AC上,DE⊥AB垂足為E,交BC的延長(zhǎng)線于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過點(diǎn)G作GH⊥AD,垂足為H,與DE的延長(zhǎng)線交于點(diǎn)M,如圖二 找出圖中與AB相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)舉行英語(yǔ)演講比賽,購(gòu)買A,B兩種筆記本作為獎(jiǎng)品,這兩種筆記本的單價(jià)分別是12元和8元.根據(jù)比賽設(shè)獎(jiǎng)情況,需購(gòu)買筆記本共30本,并且所購(gòu)買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量設(shè)買A筆記本n本,買兩種筆記本的總費(fèi)為w元.

(1)寫出w(元)關(guān)于n(本)的函數(shù)關(guān)系式,并求出自變量n的取值范圍;

(2)購(gòu)買這兩種筆記本各多少時(shí),費(fèi)用最少?最少的費(fèi)用是多少元?

(3)商店為了促銷,決定僅對(duì)A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價(jià)不變.問購(gòu)買這兩種筆記本各多少本時(shí)花費(fèi)最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案