【題目】
(1)寫出數(shù)軸上點B表示的數(shù) _______,點P表示的數(shù)________(用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?(5分)
(3)若M為AP的中點,N為PB的中點.點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長;(5分)
(4)若點D是數(shù)軸上一點,點D表示的數(shù)是x,請你探索式子|x+6|+|x-8|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.(5分)
【答案】(1)點B表示的數(shù)是-6;點P表示的數(shù)是8-5t,(2)7秒;(3)7;(4)14.
【解析】試題分析:(1)根據(jù)點A的坐標和AB之間的距離即可求得點B的坐標和點P的坐標;
(2)根據(jù)距離的差為14列出方程即可求解;
(3)分類討論:①當點P在點A、B兩點之間運動時,②當點P運動到點B的左側時,利用中點的定義和線段的和差易求出MN.
(4)分為3種情況去絕對值符號,計算三種不同情況的值,最后討論得出最小值.
試題解析:(1)點B表示的數(shù)是-6;點P表示的數(shù)是8-5t,
(2)設點P運動x秒時,在點C處追上點Q(如圖)
則AC=5x,BC=3x,
∵AC-BC=AB
∴5x-3x=14
解得:x=7,
∴點P運動7秒時,在點C處追上點Q.
(3)沒有變化.分兩種情況:
①當點P在點A、B兩點之間運動時:
MN=MP+NP=AP+BP=(AP+BP)=AB=7
②當點P運動到點B的左側時:
MN=MP-NP=AP-BP=(AP-BP)=AB=7
綜上所述,線段MN的長度不發(fā)生變化,其值為7
(4)式子|x+6|+|x-8|有最小值,最小值為14.
科目:初中數(shù)學 來源: 題型:
【題目】如圖網(wǎng)格中每個小正方形的邊長均為1,線段AB、CD的端點都在小正方形的頂點上.
(1)圖(1)中,畫一個以線段AB一邊的四邊形ABEF,且四邊形ABEF是面積為7的中心對稱圖形,點E、F都在小正方形的頂點上,并直接寫出線段BE的長;
(2)在圖(2)中,畫一個以線段CD為斜邊直角三角形CDG,且△CDG的面積是2,點G在小方形的頂點上。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年5月區(qū)教育局在全區(qū)中小學開展了“情系新疆書香援疆”捐書活動.某學校學生社團對部分學生所捐圖書進行統(tǒng)計,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表中所提供的信息解答下列問題:
(1)統(tǒng)計表中的_____________,_____________,_____________,_____________;
(2)科普圖書在扇形統(tǒng)計圖中的圓心角是_____________°;
(3)若該校共捐書1500本,請估算“科普圖書”和“小說”一共多少本.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求證:四邊形CDEF是平行四邊形;
(2)填空:
①當四邊形ABCD滿足條件 時(僅需一個條件),四邊形CDEF是矩形;
②當四邊形ABCD滿足條件 時(僅需一個條件),四邊形CDEF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個立方體的每個面上都標有數(shù)字1、2、3、4、5、6,根據(jù)圖中該立方體A、B、C三種狀態(tài)所顯示的數(shù)字,可推出“?”處的數(shù)字是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形紙片ABCD中,點M為邊CD上一點(不與C,D重合),將△ADM沿AM折疊得到△AME,延長ME交邊BC于點N,連結AN.
(1)猜想∠MAN的大小是否變化,并說明理由;
(2)如圖1,當N點恰為BC中點時,求DM的長度;
(3)如圖2,連結BD,分別交AN,AM于點Q,H.若BQ=,求線段QH的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com