【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

【答案】(1)證明見解析(2)

【解析】

試題分析:(1)由于AGBC,AFDE,所以AFE=AGC=90°,從而可證明AED=ACB,進(jìn)而可證明ADE∽△ABC;

(2)ADE∽△ABC,,又易證EAF∽△CAG,所以,從而可求解

試題解析:(1)AGBC,AFDE,

∴∠AFE=AGC=90°,

∵∠EAF=GAC,

∴∠AED=ACB,

∵∠EAD=BAC,

∴△ADE∽△ABC,

(2)由(1)可知:ADE∽△ABC,

=

由(1)可知:AFE=AGC=90°,

∴∠EAF=GAC,

∴△EAF∽△CAG,

,

=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書.學(xué)校組織學(xué)生會成隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類.根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成).請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了 名學(xué)生;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)圖2中小說類所在扇形的圓心角為 度;

(4)若該學(xué)校共有學(xué)生2500人,估計該校喜歡社科類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題是真命題的是( )

A. 直角都相等 B. 鈍角都小于180° C. 如果x2+y2=0,那么x=y=0 D. 對頂角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下列哪組數(shù)為邊長,可以得到直角三角形的是(  )

A. 9,16,25 B. 8,15,17 C. 6,8,14 D. 10,12,13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b﹣x的圖象與x軸的正半軸相交,且函數(shù)值y隨自變量x的增大而增大,則k,b的取值情況為( )
A.k>1,b<0
B.k>1,b>0
C.k>0,b>0
D.k>0,b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GEDC于點E,GFBC于點F,連結(jié)AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;

(2)若正方形ABCD的邊長為1,AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,點D,E在邊BC上,且BD=CE.

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實數(shù)根.比如對于方程,操作步驟是:

第一步:根據(jù)方程的系數(shù)特征,確定一對固定點;

第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點,另一條直角邊恒過點;

第三步:在移動過程中,當(dāng)三角板的直角頂點落在軸上點處時,點的橫坐標(biāo)即為該方程的一個實數(shù)根(如圖1);

第四步:調(diào)整三角板直角頂點的位置,當(dāng)它落在軸上另—點處時,點的橫坐標(biāo)即為該方程的另一個實數(shù)根.

(1)在圖2中,按照“第四步”的操作方法作出點(請保留作直角三角板兩條直角邊的痕跡);

(2)結(jié)合圖1,請證明“第三步”操作得到的就是方程的一個實數(shù)根;

(3)上述操作的關(guān)鍵是定兩個固定點的位置,若要以此方找到一元二次方程的實數(shù)根,請你直接寫出一對固定點的坐標(biāo);

(4)實際上,(3)中的固定點有無數(shù)對,一般地,當(dāng)之間滿足怎樣的關(guān)系時,點就是符合要求的—對固定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC∽△DEF,若△ABC與△DEF的相似比為23,△ABC的面積為40,則△DEF的面積為( 。

A.60B.70C.80D.90

查看答案和解析>>

同步練習(xí)冊答案