【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9mB處安置高為1.5m的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長.(結果保留根號)

【答案】拉線CE的長約為(6+)米.

【解析】

過點AAHCD,垂足為H,根據(jù)矩形性質(zhì)求出AB,AH,RtACH中,tanCAH=,可求出CH;RtCDE中,∠CED=60°,sinCED=,可求出CE.

解:過點AAHCD,垂足為H,

由題意可知四邊形ABDH為矩形,∠CAH=30°

AB=DH=1.5,BD=AH=9

RtACH中,tanCAH=

CH=AHtanCAH,

CH=AHtanCAH=9tan30°=9×(米),

DH=1.5,

CD=3+1.5,

RtCDE中,

∵∠CED=60°,sinCED=,

CE(米),

答:拉線CE的長約為(6+)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角△ABC中,AB2,AC,∠ACB45°,D是平面內(nèi)一點且∠ADB30°,則線段CD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,的直徑,上一點,平分,過

(1)求證:相切;

(2),,求的長;

(3)中點,過,若,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.

(1)求之間的函數(shù)關系式,并寫出自變量的取值范圍;

(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x22(k1)x+ k2+3=0的兩實數(shù)根為x1x2,設t=,則t的最大值為(   )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(1t+1),B(t-5,-1)兩點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)若點(c,p)(nq)是反比例函數(shù)y圖象上任意兩點,且滿足cn+1時,求的值.

(3)若點M(x1y1)N(x2,y2)在直線AB(不與AB重合)上,過M、N兩點分別作y軸的平行線交雙曲線于E、F,已知x1-3,0x21,當x1x2-3時,判斷四邊形NFEM的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中(如圖).已知拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和點B(0,),頂點為C,點D在其對稱軸上且位于點C下方,將線段DC繞點D按順時針方向旋轉(zhuǎn)90°,點C落在拋物線上的點P處.

(1)求這條拋物線的表達式;

(2)求線段CD的長;

(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點My軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關注,我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了如圖所示的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

扇形統(tǒng)計圖

條形統(tǒng)計圖

1)接受問卷調(diào)查的學生共有_______人,扇形統(tǒng)計圖中“不了解”部分所對應扇形的圓心角度數(shù)為_______,并把條形統(tǒng)計圖補充完整;

2)若該中學共有學生人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù)為_______人;

3)若從對校園安全知識達到“了解”程度的,個女生和,個男生中隨機抽取人參加校園安全知識競賽,請用畫樹狀圖法或列表法求出恰好抽到個男生和個女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,分別以點A (﹣2,3),B3,4)為圓心,以1、2為半徑作A、B,M、N分別是A、B上的動點,Px軸上的動點,則PM+PN的最小值等于(  )

A.B.+3C.3D.3

查看答案和解析>>

同步練習冊答案