【題目】如圖,在□ABCD中,CEAD于點E,CB=CE,點FCD邊上的一點,CB=CF,連接BFCE于點G.

(1)若,CF=,求CG的長;

(2)求證:AB=ED+CG

【答案】(1)CG=2;(2)證明見解析.

【解析】

(1)根據(jù)平行四邊形的性質(zhì)得到AD//BC,然后得到∠GBC=30°,利用tan∠GBC===,求得GC=2;
(2)延長EC到點H,連接BH,證得△HBC≌△DCE,根據(jù)各角之間的關(guān)系得到∠4=∠GBH,從而得到BH=GH,證得DC=ED+CG.

四邊形ABCD是平行四邊形,

AD//BC

CEAD,

,

,

,

BC=CF  ,

RtBCG中,,

,

GC=2

(2)延長到點,使得,連接BH ,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,ABCD為長方形,其中點A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點,ABx軸于N.

(1)求B、D兩點坐標(biāo)和長方形ABCD的面積;

(2)一動點PA出發(fā)(不與A點重合),以個單位/秒的速度沿ABB點運動,在P點運動過程中,連接MP、OP,請直接寫出∠AMP、MPO、PON之間的數(shù)量關(guān)系;

(3)是否存在某一時刻t,使三角形AMP的面積等于長方形面積的?若存在,求t的值并求此時點P的坐標(biāo);若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市啟動了第二屆“美麗港城,美在閱讀”全民閱讀活動,為了解市民每天的閱讀時間情況,隨機抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:

閱讀時間
x(min)

0≤x<30

30≤x<60

60≤x<90

x≥90

合計

頻數(shù)

450

400

50

頻率

0.4

0.1

1


(1)補全表格;
(2)將每天閱讀時間不低于60min的市民稱為“閱讀愛好者”,若我市約有500萬人,請估計我市能稱為“閱讀愛好者”的市民約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解員工對“六五”普法知識的知曉情況,從本公司隨機選取40名員工進(jìn)行普法知識考查,對考查成績進(jìn)行統(tǒng)計(成績均為整數(shù),滿分100分),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計表.解答下列問題:

組別

分?jǐn)?shù)段/分

頻數(shù)/人數(shù)

頻率

1

50.5~60.5

2

a

2

60.5~70.5

6

0.15

3

70.5~80.5

b

c

4

80.5~90.5

12

0.30

5

90.5~100.5

6

0.15

合計

40

1.00


(1)表中a= , b= , c=;
(2)請補全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該公司員工“六五”普法知識知曉程度達(dá)到優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是矩形,點A、C的坐標(biāo)分別為A(7,0),C(0,4),點D的坐標(biāo)為(5,0),點PBC邊上運動. 當(dāng)ODP是腰長為5的等腰三角形時,點P的坐標(biāo)為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BCD點,則點D到斜邊AB的距離為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
(1)[﹣4.5]= , <3.5>=
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是
(3)已知x,y滿足方程組 ,求x,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.

B:①求線段DE的長;

②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請畫示意圖說明剪法.

我們有多少種剪法,圖1是其中的一種方法:定義:如果兩條線段將一個三角形分成3個等腰三角形,我們把這兩條線段叫做這個三角形的三分線.

請你在圖2中用三種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對全等三角形,則視為同一種)

查看答案和解析>>

同步練習(xí)冊答案