【題目】計(jì)算:﹣18+(+9)﹣(﹣6)+(﹣3)

【答案】-6.

【解析】

根據(jù)有理數(shù)的加減混合運(yùn)算的方法即可求得結(jié)果.

解:﹣18+(+9)﹣(﹣6)+(﹣3)

=﹣9+6+(﹣3)

=﹣6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)學(xué)生到野外活動(dòng),為測(cè)量一池塘兩端A,B的距離,甲、乙、丙三位同學(xué)分別設(shè)計(jì)出如下幾種方案:

甲:如圖①,先在平地取一個(gè)可直接到達(dá)AB的點(diǎn)C,再連接AC,BC,并分別延長(zhǎng)ACDBCE,使DCACECBC,最后測(cè)出DE的長(zhǎng)即為A,B的距離.

乙:如圖②,先過(guò)點(diǎn)BAB的垂線,再在垂線上取CD兩點(diǎn),使BCCD,接著過(guò)點(diǎn)DBD的垂線DE,交AC的延長(zhǎng)線于點(diǎn)E,則測(cè)出DE的長(zhǎng)即為A,B的距離.

丙:如圖③,過(guò)點(diǎn)BBDAB,再由點(diǎn)D觀測(cè),在AB的延長(zhǎng)線上取一點(diǎn)C,使∠BDC=∠BDA,這時(shí)只要測(cè)出BC的長(zhǎng)即為A,B的距離.

(1)以上三位同學(xué)所設(shè)計(jì)的方案,可行的有_______________

(2)請(qǐng)你選擇一可行的方案,說(shuō)說(shuō)它可行的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(1,3)關(guān)于原點(diǎn)O對(duì)稱(chēng)的點(diǎn)A′的坐標(biāo)為( 。
A.(﹣1,3)
B.(1,﹣3)
C.(3,1)
D.(﹣1,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約用水,某城市用水標(biāo)準(zhǔn)為:居民每戶(hù)用水未超過(guò)7立方米時(shí),每立方米收水費(fèi)1.00元,并加收每立方米0.2元的城市污水處理費(fèi);超過(guò)7立方米的部分每立方米收水費(fèi)1.50元,并加收每立方米0.4元的城市污水處理費(fèi).李明家1月份用水10立方米,2月份用水6立方米,請(qǐng)你計(jì)算他家這兩個(gè)月共繳水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:﹣16+(﹣29)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2-4x+k是完全平方式,則常數(shù)k等于( )
A.2
B.4
C.±4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果A、BC三點(diǎn)在同一直線上,且線段AB=6 cmBC=4 cm,若M,N分別為ABBC的中點(diǎn),那么MN兩點(diǎn)之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A、B、P在一條直線上,則下列等式中,能判斷點(diǎn)P是線段AB的中點(diǎn)的個(gè)數(shù)有( )

AP=BP; 2BP=AB; AB=2APAP+PB=AB.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的弦,過(guò)B作BCAB交O于點(diǎn)C,過(guò)C作O的切線交AB的延長(zhǎng)線于點(diǎn)D,取AD的中點(diǎn)E,過(guò)E作EFBC交DC 的延長(zhǎng)線與點(diǎn)F,連接AF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G

求證:(1)FC=FG (2)=BCCG

查看答案和解析>>

同步練習(xí)冊(cè)答案