【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C,D均在格點上,AB與CD相交于點E.
(Ⅰ)AB的長等于 ;
(Ⅱ)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明) .
【答案】(1);(2)見解析.
【解析】分析:(Ⅰ)利用勾股定理計算即可;
(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:10,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:6,連接EK交BF于P,可證BP:PF=5:3;
詳解:(Ⅰ)AB的長==;
(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,
可得:EC:ED=AC:BD=3:10.
取格點G、H,連接GH交DE于F.
∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
取格點I、J,連接IJ交BD于K.
∵BI∥DJ,∴BK:DK=BI:DJ=5:6.
連接EK交BF于P,可證BP:PF=5:3.
故答案為:(Ⅰ);
(Ⅱ)由題意:連接AC、BD.
易知:AC∥BD,可得:EC:ED=AC:BD=3:10,
取格點G、H,連接GH交DE于F.
因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
取格點I、J,連接IJ交BD于K.
因為BI∥DJ,所以BK:DK=BI:DJ=5:6,
連接EK交BF于P,可證BP:PF=5:3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+6x與x軸交于O、A兩點,點P在拋物線上,過點P的直線y=x+m與拋物線的對稱軸交于點Q.
(1)這條拋物線的對稱軸是:直線 ,直線PQ與x軸所夾銳角的度數(shù)是 度;
(2)若S△POQ:S△PAQ=1:2,求此時的點P坐標;
(3)如圖2,點M(1,5)在拋物線上,以點M為直角頂點作Rt△MEF,且E、F均在拋物線上,則所有滿足條件的直線EF必然經(jīng)過定點N,求點N坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知在平面直角坐標系中,A(,0),B(4,0),C(0,3),過點C作CD∥x軸,與直線AD交于點D,直線AD與y軸交于點E,連接AC、BD,且tan∠DAB=.
(1)求直線AD的解析式和線段BD所在直線的解析式.
(2)如圖2,將△CAD沿著直線CD向右平移得△C1A1D1,當C1A1⊥EA1時,在x軸上是否存在點M,使△A1D1M是以A1D1為腰的等腰三角形,若存在,求出△A1D1M的周長;若不存在,請說明理由.
(3)如圖3,延長DB至F,使得BF=DB,點K為線段AD上一動點,連接KF、BK,將△FBK沿BK翻折得△F′BK,請直接寫出當DK為何值時,△F′BK與△DBK的重疊部分的面積恰好是△FKD的面積的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,于點,點為邊的中點,過點作,交的延長線于點,連接.
如圖,求證:四邊形是矩形;
如圖,當時,取的中點,連接、,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖分別是某班全體學生上學時乘車、步行、騎車人數(shù)的分布直方圖和扇形統(tǒng)計圖(兩圖都不完整),下列結(jié)論錯誤的是( )
A. 該班總?cè)藬?shù)為50人B. 步行人數(shù)為30人
C. 乘車人數(shù)是騎車人數(shù)的2.5倍D. 騎車人數(shù)占20%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE,OD.
(Ⅰ)如圖①,求∠ODE的大小;
(Ⅱ)如圖②,連接OC交DE于點F,若OF=CF,求∠A的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側(cè)),拋物線的頂點為C,直線y=x+3與x軸交于點D.
(Ⅰ)求拋物線的頂點C的坐標及A,B兩點的坐標;
(Ⅱ)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內(nèi),求t的取值范圍;
(Ⅲ)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“2016年聯(lián)歡會”中,有一個摸獎游戲:有4張紙牌,背面都是喜羊羊頭像,正面有2張是笑臉,2張是哭臉,現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.
(1)現(xiàn)在小芳和小霞分別有一次翻牌機會,若正面是笑臉,則小芳獲獎;若正面是哭臉,則小霞獲獎,她們獲獎的機會相同嗎?判斷并說明理由.
(2)如果小芳、小明都有翻兩張牌的機會.翻牌規(guī)則:小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)笑臉就獲獎.請問他們獲獎的機會相等嗎?判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,點從開始沿折線以的速度運動,點從開始沿邊以的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動,設運動時間為,當________時,四邊形也為矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com