如圖所示,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AD∥BC,∠BAD=∠DCB,若不增加任何字母和輔助線,要使得四邊形ABCD是矩形,則還需要增加一個(gè)條件是
AC=BD或∠BAD=90°(答案不唯一)
AC=BD或∠BAD=90°(答案不唯一)
分析:根據(jù)矩形的判定定理可解,常用的方法有三種:
(1)有一個(gè)角是直角的平行四邊形是矩形;
(2)有三個(gè)角是直角的四邊形是矩形;
(3)對(duì)角線互相平分且相等的四邊形是矩形,據(jù)此分析判斷.
解答:解:因?yàn)樗倪呅蜛BCD中,AB∥CD,且AB=CD,
所以四邊形ABCD是平行四邊形,
要判斷平行四邊形ABCD是矩形,
根據(jù)矩形的判定定理,在不增加任何字母與輔助線的情況下,需添加的條件是四邊形的一個(gè)角是直角或?qū)蔷相等.
故答案為:∠BAD=90°或AC=BD.
點(diǎn)評(píng):此題是一道幾何結(jié)論開(kāi)放題,全面的考查了矩形的判定定理,可以大大激發(fā)學(xué)生的思考興趣,拓展學(xué)生的思維空間,培養(yǎng)學(xué)生求異、求變的創(chuàng)新精神.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在四邊形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖所示,在四邊形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,則∠BCD的度數(shù)為
110
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在四邊形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E為BC中點(diǎn),則AE+DE長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖所示,在四邊形ABCD中,AD∥BC,要使四邊形ABCD成為平行四邊形還需要條件( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四邊形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案