【題目】如圖,邊長(zhǎng)均為的正和正原來(lái)完全重合.如圖,現(xiàn)保持正不動(dòng),使正繞兩個(gè)正三角形的公共中心點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)角度為.(注:除第題中的第②問(wèn),其余各問(wèn)只要直接給出結(jié)果即可)
當(dāng)多少時(shí),正與正出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合?
當(dāng)時(shí),要使正與正重疊部分面積最小,可以取哪些角度?
旋轉(zhuǎn)時(shí),如圖,正和正始終具有公共的外接圓.當(dāng)時(shí),記正與正重疊部分為六邊形.當(dāng)在這個(gè)范圍內(nèi)變化時(shí),
①求面積相應(yīng)的變化范圍;
②的周長(zhǎng)是否一定?說(shuō)出你的理由.
【答案】;當(dāng)、或時(shí)重疊部分面積最;①;②的周長(zhǎng)一定;理由見(jiàn)解析.
【解析】
(1)因?yàn)楫?dāng)B′與A重合時(shí)正△A'B'C'與正△ABC出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合,故α=120°;
(2)當(dāng)△A′B′C′中任意一條邊與△ABC平行時(shí)重疊部分面積最小,由(1)可知當(dāng)B′與A重合時(shí)正△A'B'C'與正△ABC出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合時(shí)α=60°,所以當(dāng)α=60°、180°或300°時(shí)重疊部分面積最。
(3)①由于兩三角形的邊長(zhǎng)均為6,所以當(dāng)A′B′∥BC時(shí),△ADI為等邊三角形,所以ID=2,所以S△ADI=IDAIsin60°=×2×2×=,進(jìn)而可得出結(jié)論;
②連接AB′,根據(jù)AB=A'B',可得出,再根據(jù)圓周角定理即可得出IA=IB',DA=DA',進(jìn)而可得出結(jié)論.
∵當(dāng)與重合時(shí)正與正出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合,此時(shí)點(diǎn)與重合,旋轉(zhuǎn)角度,
∴當(dāng)時(shí),正與正
出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合;
當(dāng)中任意一條邊與平行時(shí)重疊部分面積最小,
∵由可知當(dāng)與重合時(shí)正與正出現(xiàn)旋轉(zhuǎn)過(guò)程中的第一次完全重合時(shí),
∴當(dāng)、或時(shí)重疊部分面積最;
①∵兩三角形的邊長(zhǎng)均為,
∴當(dāng)時(shí),為等邊三角形,
∴,
∴,
∴面積相應(yīng)的變化范圍為:
②的周長(zhǎng)一定;理由如下:
連接,
∵,
∴,
∴,
∴,
∴,
同理,,
∴的周長(zhǎng):.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的骰子,骰子的六個(gè)面分別刻有1到6的點(diǎn)數(shù),朝上的面的點(diǎn)數(shù)中,一個(gè)點(diǎn)數(shù)能被另一個(gè)點(diǎn)數(shù)整除的概率是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連接AE、DE、DC。
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑OD⊥AB,與AC交于點(diǎn)E,與過(guò)點(diǎn)C的⊙O切線交于點(diǎn)D.
(1)若AC=6,BC=3,求OE的長(zhǎng).
(2)試判斷∠A與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,中,,,.若有一半徑為的圓分別與、相切,則下列何種方法可找到此圓的圓心( )
A. 的角平分線與的交點(diǎn)
B. 的中垂線與中垂線的交點(diǎn)
C. 的角平分線與中垂線的交點(diǎn)
D. 的角平分線與中垂線的交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?
(銷售利潤(rùn)=銷售價(jià)-成本價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC、∠ACB的平分線交于點(diǎn)O,若∠A=40°,則∠BOC的度數(shù)為( )
A.40°B.80°C.100°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,點(diǎn)、分別在邊、上,如果,且,那么下列說(shuō)法中,錯(cuò)誤的是( )
A. △ADE∽△ABC B. △ADE∽△ACD
C. △ADE∽△DCB D. △DEC∽△CDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(﹣4,﹣3),與y軸交于點(diǎn)B,對(duì)稱軸是x=﹣3,請(qǐng)解答下列問(wèn)題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點(diǎn),點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求△BCD的面積.注:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=﹣.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com