【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
【答案】(1)利用SAS公式求證(2)
【解析】
解:(1)①∵秒,
∴厘米,
∵厘米,點為的中點,
∴厘米.
又∵厘米,
∴厘米,
∴.
又∵,
∴,
∴.
②∵, ∴,
又∵,,則,
∴點,點運動的時間秒,
∴厘米/秒.
(2)設經過秒后點與點第一次相遇,
由題意,得,
解得秒.
∴點共運動了厘米.
∵,
∴點、點在邊上相遇,
∴經過秒點與點第一次在邊上相遇.
(1)①根據時間和速度分別求得兩個三角形中的邊的長,根據SAS判定兩個三角形全等.
②根據全等三角形應滿足的條件探求邊之間的關系,再根據路程=速度×時間公式,先求得點P運動的時間,再求得點Q的運動速度;
(2)根據題意結合圖形分析發(fā)現(xiàn):由于點Q的速度快,且在點P的前邊,所以要想第一次相遇,則應該比點P多走三角形的兩個邊AB,AC的長.
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個頂點A為頂點,且過對角頂點C的拋物線,稱為這個正方形的以A為頂點的對角拋物線.
(1)在平面直角坐標系xOy中,點在軸正半軸上,點C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O為頂點的對角拋物線;
②如圖2,在平面直角坐標系xOy中,正方形OABC的邊長為a,其以O為頂點的對角拋物線的解析式為y= x2 , 求a的值;
(2)如圖3,正方形ABCD的邊長為4,且點A的坐標為(3,2),正方形的四條對角拋物線在正方形ABCD內分別交于點M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.
(1)求證:四邊形BFCE是平行四邊形;
(2)若AD=10,DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC和△DEF中,已知AB=DE,∠A=∠D,若要得到△ABC≌△DEF,則還要補充一個條件,在下列補充方法:①AC=DF;②∠B=∠E;③∠B=∠F;④∠C=∠F ⑤BC=EF中,則錯誤結論的序號是__________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某市采用價格調控的手段達到節(jié)水的目的,該市自來水收費的價目表如下表(注:水費按月份結算,表示立方米):
價目表 | |
每月用水量 | 單價 |
不超出的部分 | 元 |
超出不超出的部分 | 元 |
超出的部分 | 元 |
注:水費按月結算 |
例:若某戶居民月份用水,應收水費為(元).
請根據上表的內容解答下列問題:
填空:若該戶居民月份用水,則應收水費________元;
若該戶居民月份用水(其中),則應收水費多少元?(用含的表示,并化簡)
若該戶居民,兩個月共用水(月份用水量超過了月份),設月份用水,求該戶居民,兩個月共交水費多少元?(用含的表示,并化簡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分線交于點O1稱為第1次操作,作∠O1DC、∠O1CD的平分線交于點O2稱為第2次操作,作∠O2DC、∠O2CD的平分線交于點O3稱為第3次操作,…,則第5次操作后∠CO5D的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:
(1)請猜想1+3+5+7+9+…+19=_______________________;
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1) =___________;
(3)請用上述規(guī)律計算:51+53+55+…+2011+2013.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,CD是圓O的一條弦,且CD⊥AB于點E.
(1)若∠A=48°,求∠OCE的度數(shù);
(2)若CD=4 ,AE=2,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班數(shù)學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元.
(1)求出y與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com