【題目】如圖,設一個三角形的三邊分別是3,13m,8.
(1)求m的取值范圍;
(2)是否存在整數(shù)m使三角形的周長為偶數(shù)?若存在,求出三角形的周長;若不存在,說明理由;
(3)如圖,在(2)的條件下,當AB=8,AC=13m,BC=3時,若D是AB的中點,連CD,P是CD上動點(不與C,D重合,當P在線段CD上運動時,有兩個式子):① ;②,其中有一個的值不變,另一個的值改變。問題:
A.請判斷出誰不變,誰改變;
B.若不變的求出其值,若改變的求出變化的范圍。
【答案】(1);(2) 存在,理由見解析;(3) ①不改變,②改變,
【解析】
(1) 根據(jù)三角形的三邊關系即可求得;
(2)由(1)求得的 m取值范圍,取整數(shù),通過計算可得;
(3)利用等底等高的兩個三角形面積相等以及三角形兩邊之和大于第三邊的性質,通過計算可以求得答案.
(1)由三角形三邊關系可得,解得;
(2)存在,理由是:
∵;
∴為整數(shù)的時候取值可為-3或-2,
當時,
∴周長是3+8+10=21,不是偶數(shù);
當時,
∴周長是,是偶數(shù),所以存在.
(3)∵點D是AB的中點,則CD是中線,設點A到CD的距離為h,則點B到CD的距離也為h,
∴, ,
∴=,
∵ =,
∴
∴①不改變;
∵
∴由三角形兩邊之和大于第三邊性質可以知道,即,
∴,即.
∴②改變.
科目:初中數(shù)學 來源: 題型:
【題目】國慶假期期間,某單位8名領導和320名員工集體外出進行素質拓展活動,準備租用45座大車或30座小車.若租用2輛大車3輛小車共需租車費1700元;若租用3輛大車2輛小車共需租車費1800元
(1)求大、小車每輛的租車費各是多少元?
(2)若每輛車上至少要有一名領導,每個人均有座位,且總租車費用不超過3100元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】足球比賽中,某運動員將在地面上的足球對著球門踢出,圖中的拋物線是足球的飛行高度y(m)關于飛行時間x(s)的函數(shù)圖象(不考慮其它因素),已知足球飛出1s時,足球的飛行高度是2.44m,足球從飛出到落地共用3s.
(1)求y關于x的函數(shù)解析式;
(2)足球的飛行高度能否達到4.88 m?請說明理由;
(3)假設沒有攔擋,足球將擦著球門左上角射入球門,球門的高為2.44 m(如圖所示,足球的大小忽略不計).如果為了能及時將足球撲出,那么足球被踢出時,離球門左邊框12m處的守門員至少要在幾s內到球門的左邊框?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)內有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,與軸交于點、,點坐標為.
求該拋物線的解析式;
拋物線的頂點為,在軸上找一點,使最小,并求出點的坐標;
點是線段上的動點,過點作,交于點,連接.當的面積最大時,求點的坐標;
若平行于軸的動直線與該拋物線交于點,與直線交于點,點的坐標為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知將邊長分別為a和2b(a>b)的長方形分割成四個全等的直角三角形,如圖1,再用這四個三角形拼成如圖2所示的正方形,中間形成一個正方形的空洞.經測量得長方形的面積為24,正方形的邊長為5.試通過你獲取的信息,求a2+b2和a2﹣b2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列問題:
(1)若 n(n≠0)是關于 的方程 x+mx-2n=0的根,求 m+n的值;
(2)已知 , 為實數(shù),且 y=2,求 2x-3y的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同個三角形中,從而解決問題.
(2)(嘗試應用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點,DM⊥DN,DM交AB于點M,DN交AC于點N,連接MN.當BM=4,MN=5,AC=6時,請直接寫出中線AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com