下列命題:①坐標(biāo)平面內(nèi),點(a,b)與點(b,a)表示同一個點;②要了解一批電視機的使用壽命,從中任意抽取40臺電視機進(jìn)行試驗,在這個問題中,樣本容量是40臺電視機;③過一點有且只有一條直線與這條直線平行;④如果a<b,那么a c < b c;其中真命題有(    )
A.3個B.2個C.1個D.0個
D
①利用點的表示法,有序數(shù)對的定義判斷;
②利用樣本容量的定義判斷;
③利用平行線的性質(zhì):過直線外一點有且只有一條直線與這條直線平行判斷;
④利用數(shù)的乘法法則即可對每項分別進(jìn)行判斷.
解:①在坐標(biāo)平面內(nèi),相同坐標(biāo)的點是同一點,因此點(a,b)與點(b,a)不表示同一個點;
②樣本容量沒有單位,錯誤;
③如果這一點在直線上就不成立,這種說法不正確;
④由于c的符號沒有確定,如果c<0,那么ac>bc,錯誤.
故選D.
主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011四川瀘州,15,3分)矩形ABCD的對角線相交于點O,AB=4cm,∠AOB=60°,則矩形的面積為       cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分11分)如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E。
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為      (平方單位)。(只寫結(jié)果,不必說理)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·孝感)已知正方形ABCD,以CD為邊作等邊△CDE,則∠AED的度數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題10分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
(Ⅰ)求證:△AMB≌△ENB;
(Ⅱ)①當(dāng)M點在何處時,AM+CM的值最小;
②當(dāng)M點在何處時,AM+BM+CM的值最小,并說明理由;
(Ⅲ)當(dāng)AM+BM+CM的最小值為時,求正方形的邊長.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在一塊長為a,寬為b的長方形草地上,有一條彎曲的柏油小路(小路任何地方
的水平寬度都是1個單位),則草地的面積為         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·賀州)如圖,在梯形ABCD中,AB∥CD,AB=3CD,對角線AC、BD交
于點O,中位線EF與AC、BD分別交于M、N兩點,則圖中陰影部分的面積是梯形ABCD
面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011廣西崇左,22,10分)(本小題滿分10分)矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質(zhì)來研究正方形的有關(guān)問題.回答下列問題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關(guān)系的下圖中.

(2)要證明一個四邊形是正方形,可先證明四邊形是矩形,再證明這個矩形的_______相等;或者先證明四邊形是菱形,在證明這個菱形有一個角是________ .
(3)某同學(xué)根據(jù)菱形面積計算公式推導(dǎo)出對角線長為a的正方形面積是S=0.5a2,對此結(jié)論,你認(rèn)為是否正確?若正確,請說明理由;若不正確,請舉出一個反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列關(guān)于矩形的說法,正確的是(   ).
A.對角線相等的四邊形是矩形B.對角線互相平分的四邊形是矩形
C.矩形的對角線互相垂直且平分D.矩形的對角線相等且互相平分

查看答案和解析>>

同步練習(xí)冊答案