【題目】如圖,點,過點做直線平行于軸,點關于直線對稱點為

1)求點的坐標;

2)點在直線上,且位于軸的上方,將沿直線翻折得到,若點恰好落在直線上,求點的坐標和直線的解析式;

3)設點在直線上,點在直線上,當為等邊三角形時,求點的坐標.

【答案】1)(3,0);(2A1,);直線BD;(3)點P的坐標為(,)或(,.

【解析】

1)根據(jù)題意,點B、C關于點M對稱,即可求出點C的坐標;

2)由折疊的性質(zhì),得AB=CB,BD=AD,根據(jù)勾股定理先求出AM的長度,設點D為(1,a),利用勾股定理構造方程,即可求出點D坐標,然后利用待定系數(shù)法求直線BD.

3)分兩種情形:如圖2中,當點P在第一象限時,連接BQ,PA.證明點PAC的垂直平分線上,構建方程組求出交點坐標即可.如圖3中,當點P在第三象限時,同法可得△CAQ≌△CBP,可得∠CAQ=CBP=30°,構建方程組解決問題即可.

解:(1)根據(jù)題意,

∵點B、C關于點M對稱,且點B、M、C都在x軸上,

又點B),點M10),

∴點C為(3,0);

2)如圖:

由折疊的性質(zhì),得:AB=CB=4,AD=CD=BD

BM=2,∠AMB=90°,

,

∴點A的坐標為:(1,);

設點D為(1a),則DM=a,BD=AD=,

RtBDM中,由勾股定理,得

,

解得:,

∴點D的坐標為:(1,);

設直線BD,則

,解得:,

∴直線BD為:;

3)如圖2中,當點P在第一象限時,連接BQPA

∵△ABC,△CPQ都是等邊三角形,

∴∠ACB=PCQ=60°,

∴∠ACP=BCQ

CA=CB,CP=CQ,

∴△ACP≌△BCQSAS),

AP=BQ,

AD垂直平分線段BC

QC=QB,

PA=PC,

∴點PAC的垂直平分線上,

,解得

P,).

如圖3中,當點P在第三象限時,同法可得△CAQ≌△CBP


∴∠CAQ=CBP=30°,

B-1,0),

∴直線PB的解析式為,

,解得:,

P,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游.

租車公司:按日收取固定租金80元,另外再按租車時間計費.

共享汽車:無固定租金,直接以租車時間(時)計費.

如圖是兩種租車方式所需費用y1元)、y2(元)與租車時間x(時)之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:

(1)分別求出y1、y2x的函數(shù)表達式;

(2)請你幫助小麗一家選擇合算的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB6,BC10,ACAB,點E、F分別是BCAD上的點,且BEDF

1)求證:四邊形AECF是平行四邊形;

2)若四邊形AECF是菱形時,請求出AE的長度;

3)若四邊形AECF是矩形時,請直接寫出BE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】曹州牡丹園售票處規(guī)定:入園門票每張80元.非節(jié)假日的票價打6折售票;節(jié)假日根據(jù)團隊人數(shù)實行分段售票:不超過10人,則按原票價購買;超過10人,則其中10人按原票價購買,超過部分的按原票價打8折購買.某旅行社帶團x人到牡丹園游覽,設非節(jié)假日的購票款為y1元,在節(jié)假日的購票款為y2元.求:

1)當x10時,y1、y2x的函數(shù)關系式;

2)該旅行社在今年51日帶甲團與510日(非節(jié)假日)帶乙團到牡丹園游覽,甲、乙兩個團各25人,請問乙團比甲團便宜多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在,,點邊上的動點,點從點出發(fā),沿邊向點運動,當運動到點時停止,若設點運動的時間為秒,點運動的速度為每秒2個單位長度.

(1)當時,= ,= ;

(2)求當為何值時,是直角三角形,說明理由;

(3)求當為何值時,,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB是一鋼架,∠AOB15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH,添的鋼管長度都與OE相等,則最多能添加這樣的鋼管_____根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C=90°,AC=BC,點D在射線BC上(不與點B、C重合),連接AD,將AD繞點D順時針旋轉(zhuǎn)90°得到DE,連接BE.

(1)如圖1,點DBC邊上.

①依題意補全圖1;

②作DFBCAB于點F,若AC=8,DF=3,求BE的長;

(2)如圖2,點DBC邊的延長線上,用等式表示線段AB、BD、BE之間的數(shù)量關系(直接寫出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展陽光體育一小時活動.根據(jù)學校事假情況,決定開設四項運動項目:A:踢毽子;B:籃球;C:跳繩;D:乒乓球.為了解學生最喜歡哪一種運動項目,隨機抽取了n名學生進行問卷調(diào)查,每位學生在問卷調(diào)查時都按要求只選擇了其中一種喜歡的運動項目.收回全部問卷后,將收集到的數(shù)據(jù)整理并繪制成如下的統(tǒng)計圖,若參與調(diào)查的學生中喜歡A方式的學生的人數(shù)占參與調(diào)查學生人數(shù)的40%.根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)n的值.

(2)求參與調(diào)查的學生中喜歡C的學生的人數(shù).

(3)根據(jù)統(tǒng)計結(jié)果,估計該校1800名學生中喜歡C方式的學生比喜歡B方式的學生多的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.

(1)求拋物線的解析式及點D的坐標;

(2)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;

(3)若點P是x軸上方拋物線上的動點,以PB為邊作正方形PBFG,隨著點P的運動,正方形的大小、位置也隨著改變,當頂點F或G恰好落在y軸上時,請直接寫出點P的橫坐標.

查看答案和解析>>

同步練習冊答案