【題目】如圖,AC,FC分別平分∠BAD,∠BFD,且分別與FB,AD相交于點G,H,已知∠B=40°,∠D=50°,求∠C的度數.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形ABCD的邊AB在y軸正半軸上,頂點A的坐標為(0,2),設頂點C的坐標為(a,b).
(1)頂點B的坐標為 ,頂點D的坐標為 (用a或b表示);
(2)如果將一個點的橫坐標作為x的值,縱坐標作為y的值,代入方程2x+3y=12成立,就說這個點的坐標是方程2x+3y=12的解.已知頂點B和D的坐標都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的條件下,平移長方形ABCD,使點B移動到點D,得到新的長方形EDFG,
①這次平移可以看成是先將長方形ABCD向右平移 個單位長度,再向下平移 個單位長度的兩次平移;
②若點P(m,n)是對角線BD上的一點,且點P的坐標是方程2x+3y=12的解,試說明平移后點P的對應點P′的坐標也是方程2x+3y=12的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點 O 為數軸的原點,A,B 為數軸上兩點,AB=15,且 OA=2OB.
(1)則點 A,B 表示的數分別為 , ;
(2)點 A,B 分別以 4 個單位長度/秒和 3 個單位長度/秒的速度相向而行,經過幾秒后,A,B 兩點相距 1 個單位長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC中,∠ACB的平分線CD交AB于點D,DE∥BC,
(1)如果點E是邊AC的中點,AC=5cm,求DE的長;
(2)如圖2,若DE平分∠ADC,在BC邊上取點F,使∠DFC=60°,若BC=7,BF=2,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將線段AB繞點A逆時針旋轉α度角得到線段AC,將線段AB繞點B逆時針旋轉α度角得到線段BD(0°<α<180°),連結BC、AD.當α=_______度時,四邊形ACBD是菱形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在紙面上有一數軸(如圖),折疊紙面.
(1)若表示1的點與表示的點重合,則表示的點與表示 的點重合;
(2)若表示的點與表示3的點重合,回答以下問題:
①表示5的點與表示 的點重合:
②若數軸上、兩點之間的距離為14(在的左側),且、兩點經折疊后重合,求、兩點表示的數是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com